|   | 
Details
   web
Records
Author Llosa, G.; Barrio, J.; Cabello, J.; Crespo, A.; Lacasta, C.; Rafecas, M.; Callier, S.; de la Taille, C.; Raux, L.
Title Detector characterization and first coincidence tests of a Compton telescope based on LaBr3 crystals and SiPMs Type Journal Article
Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 695 Issue Pages 105-108
Keywords (up) Hadron therapy; Compton imaging; LaBr3; Continuous crystal; SiPM; MPPC; G-APD
Abstract A Compton telescope for dose monitoring in hadron therapy consisting of several layers of continuous LaBr3 crystals coupled to silicon photomultiplier (SiPM) arrays is under development within the ENVISION project. In order to test the possibility of employing such detectors for the telescope, a detector head consisting of a continuous 16 mm x 18 mm x 5 mm LaBr3 crystal coupled to a SiPM array has been assembled and characterized, employing the SPIROC1 ASIC as readout electronics. The best energy resolution obtained at 511 key is 6.5% FWHM and the timing resolution is 3.1 ns FWHM. A position determination method for continuous crystals is being tested, with promising results. In addition, the detector has been operated in time coincidence with a second detector layer, to determine the coincidence capabilities of the system. The first tests are satisfactory, and encourage the development of larger detectors that will compose the telescope prototype.
Address [Llosa, G.; Barrio, J.; Cabello, J.; Crespo, A.; Lacasta, C.; Rafecas, M.] UVEG, CSIC, IFIC, Inst Fis Corpuscular, Valencia, Spain, Email: gabriela.llosa@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000311469900020 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1235
Permanent link to this record
 

 
Author Llosa, G.; Barrio, J.; Lacasta, C.; Callier, S.; Raux, L.; de La Taille, C.
Title First tests in the application of silicon photomultiplier arrays to dose monitoring in hadron therapy Type Journal Article
Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 648 Issue Pages S96-S99
Keywords (up) Hadron therapy; Compton imaging; LaBr3; Continuous crystal; SiPM; MPPC; G-APD
Abstract A detector head composed of a continuous LaBr3 crystal coupled to a silicon photomultiplier array has been mounted and tested, for its use in a Compton telescope for dose monitoring in hadron therapy. The LaBr3 crystal has 16 mm x 18 mm x 5 mm size, and it is surrounded with reflecting material in five faces. The SiPM array has 16 (4 x 4) elements of 3 mm x 3 mm size. The SPIROC1 ASIC has been employed as readout electronics. The detector shows a linear behavior up to 1275 keV. The energy resolution obtained at 511 keV is 7% FWHM, and it varies as one over the square root of the energy up to the energies tested. The variations among the detector channels are within 12%. A preliminary measurement of the timing resolution gives 7 ns FWHM. The spatial resolution obtained with the center of gravity method is 1.2 mm FWHM. The tests performed confirm the correct functioning of the detector.
Address [Llosa, G.; Barrio, J.; Lacasta, C.] Inst Fis Corpuscular IFIC CSIC UVEG, Valencia, Spain, Email: gabriela.llosa@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000305376900026 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1068
Permanent link to this record
 

 
Author Roman, F.L.; Abler, D.; Kanellopoulos, V.; Amoros, G.; Davies, J.; Dosanjh, M.; Jena, R.; Kirkby, N.; Peach, K.; Salt, J.
Title Hadron therapy information sharing prototype Type Journal Article
Year 2013 Publication Journal of Radiation Research Abbreviated Journal J. Radiat. Res.
Volume 54 Issue Pages 56-60
Keywords (up) hadron therapy; proton therapy; data federation; web portal; eHealth; cancer informatics
Abstract The European PARTNER project developed a prototypical system for sharing hadron therapy data. This system allows doctors and patients to record and report treatment-related events during and after hadron therapy. It presents doctors and statisticians with an integrated view of adverse events across institutions, using open-source components for data federation, semantics, and analysis. There is a particular emphasis upon semantic consistency, achieved through intelligent, annotated form designs. The system as presented is ready for use in a clinical setting, and amenable to further customization. The essential contribution of the work reported here lies in the novel data integration and reporting methods, as well as the approach to software sustainability achieved through the use of community-supported open-source components.
Address [Roman, Faustin Laurentiu; Abler, Daniel; Kanellopoulos, Vassiliki; Dosanjh, Manjit] CERN, European Org Nucl Res, CH-1211 Geneva 23, Switzerland, Email: faustin.roman@medaustron.at
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0449-3060 ISBN Medium
Area Expedition Conference
Notes WOS:000321463900008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1519
Permanent link to this record
 

 
Author Garonna, A.; Amaldi, U.; Bonomi, R.; Campo, D.; Degiovanni, A.; Garlasche, M.; Mondino, I.; Rizzoglio, V.; Verdu-Andres, S.
Title Cyclinac medical accelerators using pulsed C6+/H-2(+) ion sources Type Journal Article
Year 2010 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 5 Issue Pages C09004 - 19pp
Keywords (up) Instrumentation for particle-beam therapy; Instrumentation for hadron therapy; Ion sources (positive ions, negative ions, electron cyclotron resonance (ECR), electron beam (EBIS)); Acceleration cavities and magnets superconducting (high-temperature superconductor; radiation hardened magnets; normal-conducting; permanent magnet devices; wigglers and undulators)
Abstract Charged particle therapy, or so-called hadrontherapy, is developing very rapidly. There is large pressure on the scientific community to deliver dedicated accelerators, providing the best possible treatment modalities at the lowest cost. In this context, the Italian research Foundation TERA is developing fast-cycling accelerators, dubbed 'cyclinacs'. These are a combination of a cyclotron (accelerating ions to a fixed initial energy) followed by a high gradient linac boosting the ions energy up to the maximum needed for medical therapy. The linac is powered by many independently controlled klystrons to vary the beam energy from one pulse to the next. This accelerator is best suited to treat moving organs with a 4D multipainting spot scanning technique. A dual proton/carbon ion cyclinac is here presented. It consists of an Electron Beam Ion Source, a superconducting isochronous cyclotron and a high-gradient linac. All these machines are pulsed at high repetition rate (100-400 Hz). The source should deliver both C6+ and H-2(+) ions in short pulses (1.5 μs flat-top) and with sufficient intensity (at least 10(8) fully stripped carbon ions per pulse at 300 Hz). The cyclotron accelerates the ions to 120 MeV/u. It features a compact design (with superconducting coils) and a low power consumption. The linac has a novel C-band high-gradient structure and accelerates the ions to variable energies up to 400 MeV/u. High RF frequencies lead to power consumptions which are much lower than the ones of synchrotrons for the same ion extraction energy. This work is part of a collaboration with the CLIC group, which is working at CERN on high-gradient electron-positron colliders.
Address [Garonna, A.; Amaldi, U.; Bonomi, R.; Campo, D.; Degiovanni, A.; Garlasche, M.; Mondino, I.; Rizzoglio, V.; Andres, S. Verdu] TERA Fdn, I-28100 Novara, Italy, Email: Adriano.Garonna@cern.ch
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes ISI:000283796100011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 327
Permanent link to this record