toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Agaras, M.N. et al; Fiorini, L. url  doi
openurl 
  Title Laser calibration of the ATLAS Tile Calorimeter during LHC Run 2 Type Journal Article
  Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 18 Issue 6 Pages P06023 - 35pp  
  Keywords (up) Calorimeter methods; Photon detectors for UV; visible and IR photons (vacuum) (photomultipliers; HPDs; others); Calorimeters; Scintillators; scintillation and light emission processes (solid; gas and liquid scintillators)  
  Abstract This article reports the laser calibration of the hadronic Tile Calorimeter of the ATLAS experiment in the LHC Run 2 data campaign. The upgraded Laser II calibration system is described. The system was commissioned during the first LHC Long Shutdown, exhibiting a stability better than 0.8% for the laser light monitoring. The methods employed to derive the detector calibration factors with data from the laser calibration runs are also detailed. These allowed to correct for the response fluctuations of the 9852 photomultiplier tubes of the Tile Calorimeter with a total uncertainty of 0.5% plus a luminosity-dependent sub-dominant term. Finally, we report the regular monitoring and performance studies using laser events in both standalone runs and during proton collisions. These studies include channel timing and quality inspection, and photomultiplier linearity and response dependence on anode current.  
  Address [Agaras, M. N.] Barcelona Inst Sci & Technol, Inst Fis Altes Energies IFAE, Barcelona, Spain, Email: rute.pedro@cern.ch  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001108200700004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5970  
Permanent link to this record
 

 
Author ATLAS Tile Calorimeter Community (Abdallah, J. et al); Castillo Gimenez, V.; Costelo, J.; Ferrer, A.; Fullana, E.; Gonzalez, V.; Higon-Rodriguez, E.; Poveda, J.; Ruiz, A.; Salvachua, B.; Sanchis, E.; Solans, C.; Torres, J.; Valero, A.; Valls Ferrer, J.A. doi  openurl
  Title The optical instrumentation of the ATLAS Tile Calorimeter Type Journal Article
  Year 2013 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 8 Issue Pages P01005 - 21pp  
  Keywords (up) Calorimeters; Calorimeter methods; Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators)  
  Abstract The Tile Calorimeter, covering the central region of the ATLAS experiment up to pseudorapidities of +/-1.7, is a sampling device built with scintillating tiles that alternate with iron plates. The light is collected in wave-length shifting (WLS) fibers and is read out with photomultipliers. In the characteristic geometry of this calorimeter the tiles lie in planes perpendicular to the beams, resulting in a very simple and modular mechanical and optical layout. This paper focuses on the procedures applied in the optical instrumentation of the calorimeter, which involved the assembly of about 460,000 scintillator tiles and 550,000 WLS fibers. The outcome is a hadronic calorimeter that meets the ATLAS performance requirements, as shown in this paper.  
  Address [Dawson, J.; Drake, G.; Guarino, V.; Hill, N.; LeCompte, T.; Nodulman, L.; Price, E.; Proudfoot, J.; Schlereth, J.; Stanek, R.; Underwood, D.] Argonne Natl Lab, Argonne, IL 60439 USA, Email: Tomas.Davidek@cern.ch  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000320665400062 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1515  
Permanent link to this record
 

 
Author Olleros, P.; Caballero, L.; Domingo-Pardo, C.; Babiano, V.; Ladarescu, I.; Calvo, D.; Gramage, P.; Nacher, E.; Tain, J.L.; Tolosa, A. url  doi
openurl 
  Title On the performance of large monolithic LaCl3(Ce) crystals coupled to pixelated silicon photosensors Type Journal Article
  Year 2018 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 13 Issue Pages P03014 - 17pp  
  Keywords (up) Compton imaging; Detector modelling and simulations I (interaction of radiation with matter interaction of photons with matter interaction of hadrons with matter etc); Gamma detectors (scintillators CZT HPG HgI etc); Instrumentation and methods for time-of-flight (TOF); spectroscopy  
  Abstract We investigate the performance of large area radiation detectors, with high energy-and spatial-resolution, intended for the development of a Total Energy Detector with gamma-ray imaging capability, so-called i-TED. This new development aims for an enhancement in detection sensitivity in time-of-flight neutron capture measurements, versus the commonly used C6D6 liquid scintillation total-energy detectors. In this work, we study in detail the impact of the readout photosensor on the energy response of large area (50 x 50 mm(2)) monolithic LaCl3(Ce) crystals, in particular when replacing a conventional mono-cathode photomultiplier tube by an 8 x 8 pixelated silicon photomultiplier. Using the largest commercially available monolithic SiPM array (25 cm(2)), with a pixel size of 6 x 6 mm(2), we have measured an average energy resolution of 3.92% FWHM at 662 keV for crystal thick-nesses of 10, 20 and 30 mm. The results are confronted with detailed Monte Carlo (MC) calculations, where optical processes and properties have been included for the reliable tracking of the scintillation photons. After the experimental validation of the MC model, we use our MC code to explore the impact of a smaller photosensor segmentation on the energy resolution. Our optical MC simulations predict only a marginal deterioration of the spectroscopic performance for pixels of 3 x 3 mm(2).  
  Address [Olleros, P.; Caballero, L.; Domingo-Pardo, C.; Babiano, V.; Ladarescu, I.; Calvo, D.; Gramage, P.; Tain, J. L.; Tolosa, A.] Univ Valencia, CSIC, Inst Fis Corpuscular, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: Luis.Caballero@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000428146300004 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3542  
Permanent link to this record
 

 
Author Muñoz, E.; Barrio, J.; Bemmerer, D.; Etxebeste, A.; Fiedler, F.; Hueso-Gonzalez, F.; Lacasta, C.; Oliver, J.F.; Romer, K.; Solaz, C.; Wagner, L.; Llosa, G. doi  openurl
  Title Tests of MACACO Compton telescope with 4.44 MeV gamma rays Type Journal Article
  Year 2018 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 13 Issue Pages P05007 - 13pp  
  Keywords (up) Compton imaging; Instrumentation for hadron therapy; Gamma detectors (scintillators, CZT, HPG, HgI etc); Photon detectors for UV, visible and IR photons (solid state) (PIN diodes, APDs, Si PMTs, G APDs, CCDs, EBCCDs, EMCCDs etc)  
  Abstract Hadron therapy offers the possibility of delivering a large amount of radiation dose to tumors with minimal absorption by the surrounding healthy tissue. In order to fully exploit the advantages of this technique, the use of real-time beam monitoring devices becomes mandatory. Compton imaging devices can be employed to map the distribution of prompt gamma emission during the treatment and thus assess its correct delivery. The Compton telescope prototype developed at IFIC-Valencia for this purpose is made of three layers of LaBr3 crystals coupled to silicon photomultipliers. The system has been tested in a 4.44 MeV gamma field at the 3 MV Tandetron accelerator at HZDR, Dresden. Images of the target with the system in three different positions separated by 10 mm were successfully reconstructed. This indicates the ability of MACACO for imaging the prompt gamma rays emitted at such energies.  
  Address [Munoz, E.; Barrio, J.; Etxebeste, A.; Lacasta, C.; Oliver, J. F.; Solaz, C.; Llosa, G.] Univ Valencia, CSIC, Inst Fis Corpuscular, Parque Cient,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: Enrique.Munoz@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000431716900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3575  
Permanent link to this record
 

 
Author Double Chooz collaboration (Abrahao, T. et al); Novella, P. url  doi
openurl 
  Title Novel event classification based on spectral analysis of scintillation waveforms in Double Chooz Type Journal Article
  Year 2018 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 13 Issue Pages P01031 - 26pp  
  Keywords (up) Digital signal processing (DSP); Particle identification methods; Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators); Neutrino detectors  
  Abstract Liquid scintillators are a common choice for neutrino physics experiments, but their capabilities to perform background rejection by scintillation pulse shape discrimination is generally limited in large detectors. This paper describes a novel approach for a pulse shape based event classification developed in the context of the Double Chooz reactor antineutrino experiment. Unlike previous implementations, this method uses the Fourier power spectra of the scintillation pulse shapes to obtain event-wise information. A classification variable built from spectral information was able to achieve an unprecedented performance, despite the lack of optimization at the detector design level. Several examples of event classification are provided, ranging from differentiation between the detector volumes and an efficient rejection of instrumental light noise, to some sensitivity to the particle type, such as stopping muons, ortho-positronium formation, alpha particles as well as electrons and positrons. In combination with other techniques the method is expected to allow for a versatile and more efficient background rejection in the future, especially if detector optimization is taken into account at the design level.  
  Address [Abrahao, T.; dos Anjos, J. C.; Lima, H.; Pepe, I.; Wagner, S.] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil, Email: stefan.wagner@apc.in2p3.fr  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000423783800003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3466  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva