toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author ANTARES Collaboration (van Haren, H. et al); Aguilar, J.A.; Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Salesa, F.; Toscano, S.; Yepes, H.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Acoustic and optical variations during rapid downward motion episodes in the deep north-western Mediterranean Sea Type Journal Article
  Year 2011 Publication Deep-Sea Research Part I-Oceanographic Research Papers Abbreviated Journal Deep-Sea Res. Part I-Oceanogr. Res. Pap.  
  Volume 58 Issue 8 Pages 875-884  
  Keywords (up) Acoustic ADCP observations; Optical photo-multiplier observations; Deep Mediteranean; ANTARES neutrino telescope; Episodic downward current; Bioluminescence; Dense water formation; Northern boundary current  
  Abstract An Acoustic Doppler Current Profiler (ADCP) was moored at the deep-sea site of the ANTARES neutrino telescope near Toulon, France, thus providing a unique opportunity to compare high-resolution acoustic and optical observations between 70 and 170 m above the sea bed at 2475 m. The ADCP measured downward vertical currents of magnitudes up to 0.03 m s(-1) in late winter and early spring 2006. In the same period, observations were made of enhanced levels of acoustic reflection, interpreted as suspended particles including zooplankton, by a factor of about 10 and of horizontal currents reaching 0.35 m s(-1). These observations coincided with high light levels detected by the telescope, interpreted as increased bioluminescence. During winter 2006 deep dense-water formation occurred in the Ligurian subbasin, thus providing a possible explanation for these observations. However, the 10-20 days quasi-periodic episodes of high levels of acoustic reflection, light and large vertical currents continuing into the summer are not direct evidence of this process. It is hypothesized that the main process allowing for suspended material to be moved vertically later in the year is local advection, linked with topographic boundary current instabilities along the rim of the 'Northern Current'.  
  Address [van Haren, H] Royal Netherlands Inst Sea Res NIOZ, NL-1797 SZ T Horntje, Texel, Netherlands, Email: hans.van.haren@nioz.nl  
  Corporate Author Thesis  
  Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0967-0637 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000295115400006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 770  
Permanent link to this record
 

 
Author ANTARES Collaboration (Aguilar, J.A. et al); Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Salesa, F.; Toscano, S.; Yepes, H.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title AMADEUS-The acoustic neutrino detection test system of the ANTARES deep-sea neutrino telescope Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 626 Issue Pages 128-143  
  Keywords (up) AMADEUS; ANTARES; Neutrino telescope; Acoustic neutrino detection; Thermo-acoustic model  
  Abstract The AMADEUS (ANTARES Modules for the Acoustic Detection Under the Sea) system which is described in this article aims at the investigation of techniques for acoustic detection of neutrinos in the deep sea. It is integrated into the ANTARES neutrino telescope in the Mediterranean Sea. Its acoustic sensors, installed at water depths between 2050 and 2300 m, employ piezo-electric elements for the broad-band recording of signals with frequencies ranging up to 125 kHz. The typical sensitivity of the sensors is around – 145 dB re 1 V/mu Pa (including preamplifier). Completed in May 2008, AMADEUS consists of six “acoustic clusters”, each comprising six acoustic sensors that are arranged at distances of roughly 1 m from each other. Two vertical mechanical structures (so-called lines) of the ANTARES detector host three acoustic clusters each. Spacings between the clusters range from 14.5 to 340 m. Each cluster contains custom-designed electronics boards to amplify and digitise the acoustic signals from the sensors. An on-shore computer cluster is used to process and filter the data stream and store the selected events. The daily volume of recorded data is about 10 GB. The system is operating continuously and automatically, requiring only little human intervention. AMADEUS allows for extensive studies of both transient signals and ambient noise in the deep sea, as well as signal correlations on several length scales and localisation of acoustic point sources. Thus the system is excellently suited to assess the background conditions for the measurement of the bipolar pulses expected to originate from neutrino interactions.  
  Address [Anton, G.; Auer, R.; Eberl, T.; Fehr, F.; Fritsch, U.; Graf, K.; Herold, B.; Hoessl, J.; Kalekin, O.; Kappes, A.; Katz, U.; Kopper, C.; Kretschmer, W.; Lahmann, R.; Laschinsky, H.; Motz, H.; Neff, M.; Ostasch, R.; Richardt, C.; Schoeck, F.; Shanidze, R.] Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany, Email: robert.lahmann@physik.uni-erlangen.de  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000286793800020 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 578  
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Alves, S.; Calvo, D.; Carretero, V.; Gozzini, R.; Hernandez-Rey, J.J.; Lazo, A.; Manczak, J.; Real, D.; Sanchez-Losa, A.; Saina, A.; Salesa Greus, F.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Hint for a TeV neutrino emission from the Galactic Ridge with ANTARES Type Journal Article
  Year 2023 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 841 Issue Pages 137951 - 7pp  
  Keywords (up) ANTARES; Neutrino telescope; Galactic Centre; Cosmic ray; Pion-decay model  
  Abstract Interactions of cosmic ray protons, atomic nuclei, and electrons in the interstellar medium in the inner part of the Milky Way produce gamma-ray flux from the Galactic Ridge. If the gamma-ray emission is dominated by proton and nuclei interactions, a neutrino flux comparable to the gamma-ray flux is expected from the same sky region. Data collected by the ANTARES neutrino telescope are used to constrain the neutrino flux from the Galactic Ridge in the 1-100 TeV energy range. Neutrino events reconstructed both as tracks and showers are considered in the analysis and the selection is optimized for the search of an excess in the region |l| < 30 degrees, |b| < 2 degrees. The expected background in the search region is estimated using an off-zone region with similar sky coverage. Neutrino signal originating from a power-law spectrum with spectral index ranging from Gamma nu = 1to 4is simulated in both channels. The observed energy distributions are fitted to constrain the neutrino emission from the Ridge. The energy distributions in the signal region are inconsistent with the background expectation at similar to 96% confidence level. The mild excess over the background is consistent with a neutrino flux with a power law with a spectral index 2.45(-0.34)(+0.22) and a flux normalization dN nu/dE nu= 4.0(-2.0)(+2.7) x 10(-16) GeV-1 cm(-2) s(-1) sr(-1) at 40 TeV reference energy. Such flux is consistent with the expected neutrino signal if the bulk of the observed gamma-ray flux from the Galactic Ridge originates from interactions of cosmic ray protons and nuclei with a power-law spectrum extending well into the PeV energy range.  
  Address [Albert, A.; Drouhin, D.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Email: mathieu.lamoureux@uclouvain.be  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001063493500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5686  
Permanent link to this record
 

 
Author ANTARES Collaboration (Adrian-Martinez, S. et al); Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Ruiz-Rivas, J.; Salesa, F.; Sanchez-Losa, A.; Toscano, S.; Yepes, H.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Measurement of the group velocity of light in sea water at the ANTARES site Type Journal Article
  Year 2012 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.  
  Volume 35 Issue 9 Pages 552-557  
  Keywords (up) ANTARES; Neutrino telescope; Optical beacon system; Velocity of light; Refractive index  
  Abstract The group velocity of light has been measured at eight different wavelengths between 385 nm and 532 nm in the Mediterranean Sea at a depth of about 2.2 km with the ANTARES optical beacon systems. A parametrisation of the dependence of the refractive index on wavelength based on the salinity, pressure and temperature of the sea water at the ANTARES site is in good agreement with these measurements.  
  Address [Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J. P.; Hernandez-Rey, J. J.; Mangano, S.; Ruiz-Rivas, J.; Salesa, F.; Sanchez-Losa, A.; Toscano, S.; Yepes, H.; Zornoza, J. D.; Zuniga, J.] Univ Valencia, CSIC, IFIC Inst Fis Corpuscular, Valencia 46071, Spain, Email: manganos@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-6505 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000302109200002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 964  
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Corredoira, I; Gozzini, S.R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title gSeaGen: The KM3NeT GENIE-based code for neutrino telescopes Type Journal Article
  Year 2020 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.  
  Volume 256 Issue Pages 107477 - 15pp  
  Keywords (up) Astroparticle physics; High energy neutrinos; Monte Carlo event generator; Neutrino telescopes; Neutrino oscillations; KM3NeT; GENIE  
  Abstract The gSeaGen code is a GENIE-based application developed to efficiently generate high statistics samples of events, induced by neutrino interactions, detectable in a neutrino telescope. The gSeaGen code is able to generate events induced by all neutrino flavours, considering topological differences between tracktype and shower-like events. Neutrino interactions are simulated taking into account the density and the composition of the media surrounding the detector. The main features of gSeaGen are presented together with some examples of its application within the KM3NeT project. Program summary Program Title: gSeaGen CPC Library link to program files: http://dx.doi.org/10.17632/ymgxvy2br4.1 Licensing provisions: GPLv3 Programming language: C++ External routines/libraries: GENIE [1] and its external dependencies. Linkable to MUSIC [2] and PROPOSAL [3]. Nature of problem: Development of a code to generate detectable events in neutrino telescopes, using modern and maintained neutrino interaction simulation libraries which include the state-of-the-art physics models. The default application is the simulation of neutrino interactions within KM3NeT [4]. Solution method: Neutrino interactions are simulated using GENIE, a modern framework for Monte Carlo event generators. The GENIE framework, used by nearly all modern neutrino experiments, is considered as a reference code within the neutrino community. Additional comments including restrictions and unusual features: The code was tested with GENIE version 2.12.10 and it is linkable with release series 3. Presently valid up to 5 TeV. This limitation is not intrinsic to the code but due to the present GENIE valid energy range. References: [1] C. Andreopoulos at al., Nucl. Instrum. Meth. A614 (2010) 87. [2] P. Antonioli et al., Astropart. Phys. 7 (1997) 357. [3] J. H. Koehne et al., Comput. Phys. Commun. 184 (2013) 2070. [4] S. Adrian-Martinez et al., J. Phys. G: Nucl. Part. Phys. 43 (2016) 084001.  
  Address [Aiello, S.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: distefano_c@lns.infn.it  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000564482200008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4520  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva