toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kleiss, R.H.P.; Malamos, I.; Papadopoulos, C.G.; Verheyen, R. url  doi
openurl 
  Title Counting to one: reducibility of one- and two-loop amplitudes at the integrand level Type Journal Article
  Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 038 - 24pp  
  Keywords (down) QCD Phenomenology; NLO Computations  
  Abstract Calculation of amplitudes in perturbative quantum field theory involve large loop integrals. The complexity of those integrals, in combination with the large number of Feynman diagrams, make the calculations very difficult. Reduction methods proved to be very helpful, lowering the number of integrals that need to be actually calculated. Especially reduction at the integrand level improves the speed and set-up of these calculations. In this article we demonstrate, by counting the numbers of tensor structures and independent coefficients, how to write such relations at the integrand level for one-and two-loop amplitudes. We clarify their connection to the so-called spurious terms at one loop and discuss their structure in the two-loop case. This method is also applicable to higher loops, and the results obtained apply to both planar and non-planar diagrams.  
  Address [Kleiss, Ronald H. P.; Verheyen, Rob] Radboud Univ Nijmegen, NL-6525 ED Nijmegen, Netherlands, Email: R.Kleiss@science.ru.nl;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000313123800038 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1346  
Permanent link to this record
 

 
Author Bierenbaum, I.; Buchta, S.; Draggiotis, P.; Malamos, I.; Rodrigo, G. url  doi
openurl 
  Title Tree-loop duality relation beyond single poles Type Journal Article
  Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 025 - 24pp  
  Keywords (down) QCD Phenomenology; NLO Computations  
  Abstract We develop the Tree-Loop Duality Relation for two- and three-loop integrals with multiple identical propagators (multiple poles). This is the extension of the Duality Relation for single poles and multi-loop integrals derived in previous publications. We prove a generalization of the formula for single poles to multiple poles and we develop a strategy for dealing with higher-order pole integrals by reducing them to single pole integrals using Integration By Parts.  
  Address Univ Hamburg, Inst Theoret Phys 2, D-22761 Hamburg, Germany, Email: isabella.bierenbaum@desy.de;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000317521200025 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1418  
Permanent link to this record
 

 
Author Buchta, S.; Chachamis, G.; Draggiotis, P.; Malamos, I.; Rodrigo, G. url  doi
openurl 
  Title On the singular behaviour of scattering amplitudes in quantum field theory Type Journal Article
  Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 11 Issue 11 Pages 014 - 13pp  
  Keywords (down) QCD Phenomenology; NLO Computations  
  Abstract We analyse the singular behaviour of one-loop integrals and scattering amplitudes in the framework of the loop-tree duality approach. We show that there is a partial cancellation of singularities at the loop integrand level among the different components of the corresponding dual representation that can be interpreted in terms of causality. The remaining threshold and infrared singularities are restricted to a finite region of the loop momentum space, which is of the size of the external momenta and can be mapped to the phase-space of real corrections to cancel the soft and collinear divergences.  
  Address [Buchta, Sebastian; Chachamis, Grigorios; Malamos, Ioannis; Rodrigo, German] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Valencia, Spain, Email: sbuchta@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000344788000003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2065  
Permanent link to this record
 

 
Author Chachamis, G.; Deak, M.; Hentschinski, M.; Rodrigo, G.; Sabio Vera, A. url  doi
openurl 
  Title Single bottom quark production in kT-factorisation Type Journal Article
  Year 2015 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 123 - 17pp  
  Keywords (down) QCD Phenomenology; NLO Computations  
  Abstract We present a study within the k(T)-factorisation scheme on single bottom quark production at the LHC. In particular, we calculate the rapidity and transverse momentum differential distributions for single bottom quark/anti-quark production. In our setup, the unintegrated gluon density is obtained from the NLx BFKL Green function whereas we included mass effects to the Lx heavy quark jet vertex. We compare our results to the corresponding distributions predicted by the usual collinear factorisation scheme. The latter were produced with Pythia 8.1.  
  Address [Chachamis, Grigorios; Sabio Vera, Agustin] Univ Autonoma Madrid, E-28049 Madrid, Spain, Email: grigorios.chachamis@csic.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000361753300003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2614  
Permanent link to this record
 

 
Author de Florian, D.; Sborlini, G.F.R.; Rodrigo, G. url  doi
openurl 
  Title Two-loop QED corrections to the Altarelli-Parisi splitting functions Type Journal Article
  Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 056 - 16pp  
  Keywords (down) NLO Computations; QCD Phenomenology  
  Abstract We compute the two-loop QED corrections to the Altarelli-Parisi (AP) splitting functions by using a deconstructive algorithmic Abelianization of the well-known NLO QCD corrections. We present explicit results for the full set of splitting kernels in a basis that includes the leptonic distribution functions that, starting from this order in the QED coupling, couple to the partonic densities. Finally, we perform a phenomenological analysis of the impact of these corrections in the splitting functions.  
  Address [de Florian, Daniel] UNSAM, ICAS, Campus Miguelete,25 Mayo & Francia, RA-1650 Buenos Aires, DF, Argentina, Email: deflo@unsam.edu.ar;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000386669900007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2863  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva