toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Antel, C. et al; Lopez-Pavon, J.; Sandner, S.; Urrea, S. url  doi
openurl 
  Title Feebly-interacting particles: FIPs 2022 Workshop Report Type Journal Article
  Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 83 Issue 12 Pages 1122 - 266pp  
  Keywords (up)  
  Abstract Particle physics today faces the challenge of explaining the mystery of dark matter, the origin of matter over anti-matter in the Universe, the origin of the neutrino masses, the apparent fine-tuning of the electro-weak scale, and many other aspects of fundamental physics. Perhaps the most striking frontier to emerge in the search for answers involves new physics at mass scales comparable to familiar matter, below the GeV-scale, or even radically below, down to sub-eV scales, and with very feeble interaction strength. New theoretical ideas to address dark matter and other fundamental questions predict such feebly interacting particles (FIPs) at these scales, and indeed, existing data provide numerous hints for such possibility. A vibrant experimental program to discover such physics is under way, guided by a systematic theoretical approach firmly grounded on the underlying principles of the Standard Model. This document represents the report of the FIPs 2022 workshop, held at CERN between the 17 and 21 October 2022 and aims to give an overview of these efforts, their motivations, and the decadal goals that animate the community involved in the search for FIPs.  
  Address [Antel, C.] Univ Geneva, Dept Phys Nucl & Corpusculaire, Geneva, Switzerland, Email: MGiannotti@barry.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001127234200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5908  
Permanent link to this record
 

 
Author Coloma, P.; Martin-Albo, J.; Urrea, S. url  doi
openurl 
  Title Discovering long-lived particles at DUNE Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 3 Pages 035013 - 24pp  
  Keywords (up)  
  Abstract Long-lived particles (LLPs) arise in many theories beyond the Standard Model. These may be copiously produced from meson decays (or through their mixing with the LLPs) at neutrino facilities and leave a visible decay signal in nearby neutrino detectors. We compute the expected sensitivity of the DUNE liquid argon (LAr) and gaseous argon near detectors (NDs) to light LLP decays. In doing so, we determine the expected backgrounds for both detectors, which have been largely overlooked in the literature, taking into account their angular and energy resolution. We show that searches for LLP decays into muon pairs, or into three pions, would be extremely clean. Conversely, decays into two photons would be affected by large backgrounds from neutrino interactions for both near detectors; finally, the reduced signal efficiency for e thorn e- pairs leads to a reduced sensitivity for ND-LAr. Our results are first presented in a model -independent way, as a function of the mass of the new state and its lifetime. We also provide detailed calculations for several phenomenological models with axionlike particles (coupled to gluons, electroweak bosons, or quark currents). Some of our results may also be of interest for other neutrino facilities using a similar detector technology (e.g., MicroBooNE, SBND, ICARUS, or the T2K near detector).  
  Address [Coloma, Pilar] Univ Autonoma Madrid, Inst Fis Teor UAM CSIC, Calle Nicolas Cabrera 13-15, Madrid 28049, Spain, Email: pilar.coloma@ift.csic.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001183262300002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 6047  
Permanent link to this record
 

 
Author Coloma, P.; Hernandez, P.; Urrea, S. url  doi
openurl 
  Title New bounds on axion-like particles from MicroBooNE Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 025 - 25pp  
  Keywords (up) Axions and ALPs; Kaons  
  Abstract Neutrino experiments lie at the edge of the intensity frontier and therefore can be exploited to search for new light particles weakly coupled to the visible sector. In this work we derive new constraints on axion-like particles (ALPs) using data from the MicroBooNE experiment, from a search for e(+)e(-) pairs pointing in the direction of the NuMI absorber. In particular, we consider the addition of higher-dimensional effective operators coupling the ALP to the electroweak gauge bosons. These would induce K -> pi a from kaon decay at rest in the NuMI absorber, as well as ALP decays into pairs of leptons or photons. We discuss in detail and compare various results obtained for the decay width K -> pi a in previous literature. For the operator involving the Higgs, MicroBooNE already sets competitive bounds (comparable to those of NA62) for ALP masses between 100 and 200 MeV. We also compute the expected sensitivities from the full NuMI dataset recorded at MicroBooNE. Our results show that a search for a -> gamma gamma signal may be able to improve over current constraints from beam-dump experiments on the operator involving the ALP coupling to the W.  
  Address [Coloma, Pilar] Univ Autonoma Madrid, Inst Fis Teor UAM CSIC, Calle Nicolas Cabrera 1315, E-28049 Madrid, Spain, Email: pilar.coloma@ift.csic.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000836240700003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5323  
Permanent link to this record
 

 
Author Coloma, P.; Lopez-Pavon, J.; Rosauro-Alcaraz, S.; Urrea, S. url  doi
openurl 
  Title New physics from oscillations at the DUNE near detector, and the role of systematic uncertainties Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 065 - 33pp  
  Keywords (up) Beyond Standard Model; Neutrino Physics  
  Abstract We study the capabilities of the DUNE near detector to probe deviations from unitarity of the leptonic mixing matrix, the 3+1 sterile formalism and Non-Standard Interactions affecting neutrino production and detection. We clarify the relation and possible mappings among the three formalisms at short-baseline experiments, and we add to current analyses in the literature the study of the nu(mu)-> nu(tau) appearance channel. We study in detail the impact of spectral uncertainties on the sensitivity to new physics using the DUNE near detector, which has been widely overlooked in the literature. Our analysis shows that this plays an important role on the results and, in particular, that it can lead to a strong reduction in the sensitivity to sterile neutrinos from nu(mu)-> nu(e) transitions, by more than two orders of magnitude. This stresses the importance of a joint experimental and theoretical effort to improve our understanding of neutrino nucleus cross sections, as well as hadron production uncertainties and beam focusing effects. Nevertheless, even with our conservative and more realistic implementation of systematic uncertainties, we find that an improvement over current bounds in the new physics frameworks considered is generally expected if spectral uncertainties are below the 5% level.  
  Address [Coloma, Pilar; Rosauro-Alcaraz, Salvador] Univ Autonoma Madrid, Inst Fis Teor, UAM CSIC, Calle Nicolas Cabrera 13-15, E-28049 Madrid, Spain, Email: pilar.coloma@ift.csic.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000686712300001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4944  
Permanent link to this record
 

 
Author Coloma, P.; Gonzalez-Garcia, M.C.; Maltoni, M.; Pinheiro, J.P.; Urrea, S. url  doi
openurl 
  Title Constraining new physics with Borexino Phase-II spectral data Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 138 - 35pp  
  Keywords (up) Neutrino Interactions; Non-Standard Neutrino Properties  
  Abstract We present a detailed analysis of the spectral data of Borexino Phase II, with the aim of exploiting its full potential to constrain scenarios beyond the Standard Model. In particular, we quantify the constraints imposed on neutrino magnetic moments, neutrino non-standard interactions, and several simplified models with light scalar, pseudoscalar or vector mediators. Our analysis shows perfect agreement with those performed by the collaboration on neutrino magnetic moments and neutrino non-standard interactions in the same restricted cases and expands beyond those, stressing the interplay between flavour oscillations and flavour non-diagonal interaction effects for the correct evaluation of the event rates. For simplified models with light mediators we show the power of the spectral data to obtain robust limits beyond those previously estimated in the literature.  
  Address [Coloma, Pilar; Maltoni, Michele] CSIC UAM, Inst Fis Teor IFT CFTMAT, Calle Nicolas Cabrera 1315,Campus Cantoblanco, E-28049 Madrid, Spain, Email: pilar.coloma@ift.csic.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000829963100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5307  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva