toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gimenez-Alventosa, V.; Ballester, F.; Vijande, J. doi  openurl
  Title VoxelMages: a general-purpose graphical interface for designing geometries and processing DICOM images for PENELOPE Type Journal Article
  Year 2016 Publication Applied Radiation And Isotopes Abbreviated Journal Appl. Radiat. Isot.  
  Volume 118 Issue Pages 251-257  
  Keywords (up) 87.53.Bn; 87.53.Jw; 87.55.Qr; 87.55.km; 87.55.K  
  Abstract The design and construction of geometries for Monte Carlo calculations is an error-prone, time-consuming, and complex step in simulations describing particle interactions and transport in the field of medical physics. The software VoxelMages has been developed to help the user in this task. It allows to design complex geometries and to process DICOM image files for simulations with the general-purpose Monte Carlo code PENELOPE in an easy and straightforward way. VoxelMages also allows to import DICOM-RT structure contour information as delivered by a treatment planning system. Its main characteristics, usage and performance benchmarking are described in detail.  
  Address [Gimenez-Alventosa, V.; Ballester, F.; Vijande, J.] Univ Valencia, Dept Fis Atom Mol & Nucl, E-46100 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0969-8043 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000390736100039 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2904  
Permanent link to this record
 

 
Author Quintero-Quintero, A.; Patiño-Camargo, G.; Soriano, A.; Palma, J.D.; Vilar-Palop, J.; Pujades, M.C.; Llorca-Domaica, N.; Ballester, F.; Vijande, J.; Candela-Juan, C. doi  openurl
  Title Calibration of a thermoluminescent dosimeter worn over lead aprons in fluoroscopy guided procedures Type Journal Article
  Year 2018 Publication Journal of Radiological Protection Abbreviated Journal J. Radiol. Prot.  
  Volume 38 Issue 2 Pages 549-563  
  Keywords (up) backscatter correction factor; TLD; lead apron; fluoroscopy; eye lens dose  
  Abstract Fluoroscopy guided interventional procedures provide remarkable benefits to patients. However, medical staff working near the scattered radiation field may be exposed to high cumulative equivalent doses, thus requiring shielding devices such as lead aprons and thyroid collars. In this situation, it remains an acceptable practice to derive equivalent doses to the eye lenses or other unprotected soft tissues with a dosimeter placed above these protective devices. Nevertheless, the radiation backscattered by the lead shield differs from that generated during dosimeter calibration with a water phantom. In this study, a passive personal thermoluminescent dosimeter (TLD) was modelled by means of the Monte Carlo (MC) code Penelope. The results obtained were validated against measurements performed in reference conditions in a secondary standard dosimetry laboratory. Next, the MC model was used to evaluate the backscatter correction factor needed for the case where the dosimeter is worn over a lead shield to estimate the personal equivalent dose H-p(0.07) to unprotected soft tissues. For this purpose, the TLD was irradiated over a water slab phantom with a photon beam representative of the result of a fluoroscopy beam scattered by a patient. Incident beam angles of 0 degrees and 60 degrees, and lead thicknesses between the TLD and phantom of 0.25 and 0.5 mm Pb were considered. A backscatter correction factor of 1.23 (independent of lead thickness) was calculated comparing the results with those faced in reference conditions (i.e., without lead shield and with an angular incidence of 0 degrees). The corrected dose algorithm was validated in laboratory conditions with dosi-meters irradiated over a thyroid collar and angular incidences of 0 degrees, 40 degrees and 60 degrees, as well as with dosimeters worn by interventional radiologists and cardiologists. The corrected dose algorithm provides a better approach to estimate the equivalent dose to unprotected soft tissues such as eye lenses. Dosimeters that are not shielded from backscatter radiation might underestimate personal equivalent doses when worn over a lead apron and, therefore, should be specifically characterized for this purpose.  
  Address [Quintero-Quintero, A.; Patino-Camargo, G.] Univ Valencia, Dept Atom Mol & Nucl Phys, E-46100 Burjassot, Valencia, Spain, Email: ccanjuan@gmail.com  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0952-4746 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000428913900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3552  
Permanent link to this record
 

 
Author Rivard, M.J.; Granero, D.; Perez-Calatayud, J.; Ballester, F. doi  openurl
  Title Influence of photon energy spectra from brachytherapy sources on Monte Carlo simulations of kerma and dose rates in water and air Type Journal Article
  Year 2010 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume 37 Issue 2 Pages 869-876  
  Keywords (up) biomedical materials; brachytherapy; dosimetry; iodine; iridium; Monte Carlo methods; palladium; radioisotopes  
  Abstract Methods: For Ir-192, I-125, and Pd-103, the authors considered from two to five published spectra. Spherical sources approximating common brachytherapy sources were assessed. Kerma and dose results from GEANT4, MCNP5, and PENELOPE-2008 were compared for water and air. The dosimetric influence of Ir-192, I-125, and Pd-103 spectral choice was determined. Results: For the spectra considered, there were no statistically significant differences between kerma or dose results based on Monte Carlo code choice when using the same spectrum. Water-kerma differences of about 2%, 2%, and 0.7% were observed due to spectrum choice for Ir-192, I-125, and Pd-103, respectively (independent of radial distance), when accounting for photon yield per Bq. Similar differences were observed for air-kerma rate. However, their ratio (as used in the dose-rate constant) did not significantly change when the various photon spectra were selected because the differences compensated each other when dividing dose rate by air-kerma strength. Conclusions: Given the standardization of radionuclide data available from the National Nuclear Data Center (NNDC) and the rigorous infrastructure for performing and maintaining the data set evaluations, NNDC spectra are suggested for brachytherapy simulations in medical physics applications.  
  Address [Rivard, Mark J.] Tufts Univ, Sch Med, Dept Radiat Oncol, Boston, MA 02111 USA, Email: mrivard@tuftsmedicalcenter.org  
  Corporate Author Thesis  
  Publisher Amer Assoc Physicists Medicine Amer Inst Physics Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000274075600048 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 504  
Permanent link to this record
 

 
Author Richart, J.; Otal, A.; Rodriguez, S.; Nicolas, A.I.; DePiaggio, M.; Santos, M.; Vijande, J.; Ballester, F.; Perez-Calatayud, J. doi  openurl
  Title A practical MRI-based reconstruction method for a new endocavitary and interstitial gynaecological template Type Journal Article
  Year 2015 Publication Journal of Contemporary Brachytherapy Abbreviated Journal J. Contemp. Brachytherapy  
  Volume 7 Issue 5 Pages 407-414  
  Keywords (up) brachytherapy template; catheter reconstruction; gynecological template; interstitial implants  
  Abstract Purpose: There are perineal templates for interstitial implants such as MUPIT and Syed applicators. Their limitations are the intracavitary component deficit and the necessity to use computed tomography (CT) for treatment planning since both applicators are non-magnetic resonance imaging (MRI) compatibles. To overcome these problems, a new template named Template Benidorm (TB) has been recently developed. Titanium needles are usually reconstructed based on their own artifacts, mainly in T1-weighted sequence, using the void on the tip as the needle tip position. Nevertheless, patient tissues surrounding the needles present heterogeneities that complicate the accurate identification of these artifact patterns. The purpose of this work is to improve the titanium needle reconstruction uncertainty for the TB case using a simple method based on the free needle lengths and typical MRI pellets markers. Material and methods: The proposed procedure consists on the inclusion of three small A-vitamin pellets (hyper-intense on MRI images) compressed by both applicator plates defining the central plane of the plate's arrangement. The needles used are typically 20 cm in length. For each needle, two points are selected defining the straight line. From such line and the plane equations, the intersection can be obtained, and using the free length (knowing the offset distance), the coordinates of the needle tip can be obtained. The method is applied in both T1W and T2W acquisition sequences. To evaluate the inter-observer variation of the method, three implants of T1W and another three of T2W have been reconstructed by two different medical physicists with experience on these reconstructions. Results and conclusions: The differences observed in the positioning were significantly smaller than 1 mm in all cases. The presented algorithm also allows the use of only T2W sequence either for contouring or reconstruction purposes. The proposed method is robust and independent of the visibility of the artifact at the tip of the needle.  
  Address [Richart, Jose; Otal, Antonio; Rodriguez, Silvia; DePiaggio, Marina; Santos, Manuel; Perez-Calatayud, Jose] Benidorm Hosp, Dept Radiotherapy, Alicante, Spain, Email: fballest@uv.es  
  Corporate Author Thesis  
  Publisher Termedia Publishing House Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1689-832x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000365247600012 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2476  
Permanent link to this record
 

 
Author Ballester, F.; Granero, D.; Perez-Calatayud, J.; Venselaar, J.L.M.; Rivard, M.J. doi  openurl
  Title Study of encapsulated Tm-170 sources for their potential use in brachytherapy Type Journal Article
  Year 2010 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume 37 Issue 4 Pages 1629-1637  
  Keywords (up) brachytherapy; cancer; dosimetry; prosthetics; radioisotopes; thulium  
  Abstract Methods: The authors have assumed a theoretical Tm-170 cylindrical source encapsulated with stainless steel and typical dimensions taken from the currently available HDR Ir-192 brachytherapy sources. The dose-rate distribution was calculated for this source using the GEANT4 Monte Carlo (MC) code considering both photon and electron Tm-170 spectra. The AAPM TG-43 U1 brachytherapy dosimetry parameters were derived. To study general properties of Tm-170 encapsulated sources, spherical sources encapsulated with stainless steel and platinum were also studied. Moreover, the influence of small variations in the active core and capsule dimensions on the dosimetric characteristics was assessed. Treatment times required for a Tm-170 source were compared to those for Ir-192 and Yb-169 for the same contained activity. Results: Due to the energetic beta spectrum and the large electron yield, the bremsstrahlung contribution to the dose was of the same order of magnitude as from the emitted gammas and characteristic x rays. Moreover, the electron spectrum contribution to the dose was significant up to 4 mm from the source center compared to the photon contribution. The dose-rate constant Lambda of the cylindrical source was 1.23 cGy h(-1) U-1. The behavior of the radial dose function showed promise for applications in brachytherapy. Due to the electron spectrum, the anisotropy was large for r < 6 mm. Variations in manufacturing tolerances did not significantly influence the final dosimetry data when expressed in cGy h(-1) U-1. For typical capsule dimensions, maximum reference dose rates of about 0.2, 10, and 2 Gy min(-1) would then be obtained for Tm-170, Ir-192, and Yb-169, respectively, resulting in treatment times greater than those for HDR Ir-192 brachytherapy. Conclusions: The dosimetric characteristics of source designs exploiting the low photon energy of Tm-170 were studied for potential application in HDR-brachytherapy. Dose-rate distributions were obtained for cylindrical and simplified spherical Tm-170 source designs (stainless steel and platinum capsule materials) using MC calculations. Despite the high activity of Tm-170, calculated treatment times were much longer than for Ir-192.  
  Address [Ballester, Facundo] Univ Valencia, Dept Atom Mol & Nucl Phys, E-46100 Burjassot, Spain, Email: fballest@uv.es  
  Corporate Author Thesis  
  Publisher Amer Assoc Physicists Medicine Amer Inst Physics Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000276211200027 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 478  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva