Aliaga, R. J., Herrero-Bosch, V., Capra, S., Pullia, A., Duenas, J. A., Grassi, L., et al. (2015). Conceptual design of the TRACE detector readout using a compact, dead time-less analog memory ASIC. Nucl. Instrum. Methods Phys. Res. A, 800, 34–39.
Abstract: The new TRacking Array for light Charged particle Ejectiles (TRACE) detector system requires monitorization and sampling of all pulses in a large number of channels with very strict space and power consumption restrictions for the front-end electronics and cabling, Its readout system is to be based on analog memory ASICs with 64 channels each that sample a 1 μs window of the waveform of any valid pulses at 200 MHz while discarding any other signals and are read out at 50 MHz with external ADC digitization. For this purpose, a new, compact analog memory architecture is described that allows pulse capture with zero dead time in any channel while vastly reducing the total number of storage cells, particularly for large amounts of input channels. This is accomplished by partitioning the typical Switched Capacitor Array structure into two pipelined, asymmetric stages and introducing FIFO queue-like control circuitry for captured data, achieving total independence between the capture and readout operations.
|
Boudagga, R. et al, Lacasta, C., Marinas, C., Mazorra de Cos, J., Molina-Bueno, L., & Vobbilisetti, V. (2025). Upgrade of the Belle II vertex detector with depleted monolithic CMOS active sensors. Nucl. Instrum. Methods Phys. Res. A, 1080, 170677–4pp.
Abstract: The Belle II experiment at the SuperKEKB collider in Japan, which currently holds the world luminosity record for electron-positron collisions, plans to upgrade its vertex detector (VXD) to operate at a target luminosity of 6 x 1035 cm-2s-1. A new pixelated vertex detector (VTX) is under development, utilizing a monolithic CMOS pixel sensor named OBELIX (Optimized BELle II pIXel). The VTX design incorporates 5-6 layers with a total material budget below 2.5% X0. All layers will employ the OBELIX, adapted from the TJ-Monopix2 sensor initially designed for the ATLAS Inner Tracker (ITk) upgrade. The OBELIX sensor, designed using a 180 nm CMOS process, features an enhanced pixel matrix and additional functionalities compared to its predecessor. Laboratory tests and test beam characterization results on irradiated and unirradiated TJ-Monopix2 sensors have yielded promising results, confirming the key performance parameters for the OBELIX design. This paper reviews the overall design of the VTX and the OBELIX sensor and presents the latest results of the in-beam characterization of the TJ-Monopix2.
|
Alvarez, V., Herrero-Bosch, V., Esteve, R., Laing, A., Rodriguez, J., Querol, M., et al. (2019). The electronics of the energy plane of the NEXT-White detector. Nucl. Instrum. Methods Phys. Res. A, 917, 68–76.
Abstract: This paper describes the electronics of NEXT-White (NEW) detector PMT plane, a high pressure xenon TPC with electroluminescent amplification (HPXe-EL) currently operating at the Laboratorio Subterraneo de Canfranc (LSC) in Huesca, Spain. In NEXT-White the energy of the event is measured by a plane of photomultipliers (PMTs) located behind a transparent cathode. The PMTs are Hamamatsu R11410-10 chosen due to their low radioactivity. The electronics have been designed and implemented to fulfill strict requirements: an overall energy resolution below 1% and a radiopurity budget of 20 mBq unit(-1) in the chain of Bi-214. All the components and materials have been carefully screened to assure a low radioactivity level and at the same time meet the required front-end electronics specifications. In order to reduce low frequency noise effects and enhance detector safety a grounded cathode connection has been used for the PMTs. This implies an AC-coupled readout and baseline variations in the PMT signals. A detailed description of the electronics and a novel approach based on a digital baseline restoration to obtain a linear response and handle AC coupling effects is presented. The final PMT channel design has been characterized with linearity better than 0.4% and noise below 0.4 mV.
|
Belver, D., Cabanelas, P., Castro, E., Garzon, J. A., Gil, A., Gonzalez-Diaz, D., et al. (2010). Performance of the Low-Jitter High-Gain/Bandwidth Front-End Electronics of the HADES tRPC Wall. IEEE Trans. Nucl. Sci., 57(5), 2848–2856.
Abstract: A front-end electronics (FEE) chain for accurate time measurements has been developed for the new Resistive Plate Chamber (RPC)-based Time-of-Flight (TOF) wall of the High Acceptance Di-Electron Spectrometer (HADES). The wall covers an area of around 8 m(2) divided in 6 sectors. In total, 1122 4-gap timing RPC cells are read-out by 2244 time and charge sensitive channels. The FEE chain consists of 2 custom-made boards: a 4-channel Daughter BOard(DBO) and a 32-channel MotherBOard (MBO). The DBO uses a fast 2 GHz amplifier feeding a dual high-speed discriminator. The time and charge information are encoded, respectively, in the leading edge and the width of an LVDS signal. Each MBO houses up to 8 DBOs providing them regulated voltage supply, threshold values via DACs, test signals and, additionally, routing out a signal proportional to the channel multiplicity needed for a 1st level trigger decision. The MBO delivers LVDS signals to a multi-purpose Trigger Readout Board (TRB) for data acquisition. The FEE allows achieving a system resolution around 75 ps fulfilling comfortably the requirements of the HADES upgrade [1]. The commissioning of the whole RPC wall is finished and the 6 sectors are already mounted in their final position in the HADES spectrometer and ready to take data during the beam-times foreseen for 2010.
|
Poley, L. et al, Bernabeu, J., Civera, J. V., Lacasta, C., Leon, P., Platero, A., et al. (2020). The ABC130 barrel module prototyping programme for the ATLAS strip tracker. J. Instrum., 15(9), P09004–78pp.
Abstract: For the Phase-II Upgrade of the ATLAS Detector [1], its Inner Detector, consisting of silicon pixel, silicon strip and transition radiation sub-detectors, will be replaced with an all new 100% silicon tracker, composed of a pixel tracker at inner radii and a strip tracker at outer radii. The future ATLAS strip tracker will include 11,000 silicon sensor modules in the central region (barrel) and 7,000 modules in the forward region (end-caps), which are foreseen to be constructed over a period of 3.5 years. The construction of each module consists of a series of assembly and quality control steps, which were engineered to be identical for all production sites. In order to develop the tooling and procedures for assembly and testing of these modules, two series of major prototyping programs were conducted: an early program using readout chips designed using a 250 nm fabrication process (ABCN-250) [2, 3] and a subsequent program using a follow-up chip set made using 130 nm processing (ABC130 and HCC130 chips). This second generation of readout chips was used for an extensive prototyping program that produced around 100 barrel-type modules and contributed significantly to the development of the final module layout. This paper gives an overview of the components used in ABC130 barrel modules, their assembly procedure and findings resulting from their tests.
|