|   | 
Details
   web
Records
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Corredoira, I; Gozzini, S.R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Thakore, T.; Zornoza, J.D.; Zuñiga, J.
Title gSeaGen: The KM3NeT GENIE-based code for neutrino telescopes Type Journal Article
Year 2020 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.
Volume 256 Issue Pages 107477 - 15pp
Keywords (up) Astroparticle physics; High energy neutrinos; Monte Carlo event generator; Neutrino telescopes; Neutrino oscillations; KM3NeT; GENIE
Abstract The gSeaGen code is a GENIE-based application developed to efficiently generate high statistics samples of events, induced by neutrino interactions, detectable in a neutrino telescope. The gSeaGen code is able to generate events induced by all neutrino flavours, considering topological differences between tracktype and shower-like events. Neutrino interactions are simulated taking into account the density and the composition of the media surrounding the detector. The main features of gSeaGen are presented together with some examples of its application within the KM3NeT project. Program summary Program Title: gSeaGen CPC Library link to program files: http://dx.doi.org/10.17632/ymgxvy2br4.1 Licensing provisions: GPLv3 Programming language: C++ External routines/libraries: GENIE [1] and its external dependencies. Linkable to MUSIC [2] and PROPOSAL [3]. Nature of problem: Development of a code to generate detectable events in neutrino telescopes, using modern and maintained neutrino interaction simulation libraries which include the state-of-the-art physics models. The default application is the simulation of neutrino interactions within KM3NeT [4]. Solution method: Neutrino interactions are simulated using GENIE, a modern framework for Monte Carlo event generators. The GENIE framework, used by nearly all modern neutrino experiments, is considered as a reference code within the neutrino community. Additional comments including restrictions and unusual features: The code was tested with GENIE version 2.12.10 and it is linkable with release series 3. Presently valid up to 5 TeV. This limitation is not intrinsic to the code but due to the present GENIE valid energy range. References: [1] C. Andreopoulos at al., Nucl. Instrum. Meth. A614 (2010) 87. [2] P. Antonioli et al., Astropart. Phys. 7 (1997) 357. [3] J. H. Koehne et al., Comput. Phys. Commun. 184 (2013) 2070. [4] S. Adrian-Martinez et al., J. Phys. G: Nucl. Part. Phys. 43 (2016) 084001.
Address [Aiello, S.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: distefano_c@lns.infn.it
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-4655 ISBN Medium
Area Expedition Conference
Notes WOS:000564482200008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4520
Permanent link to this record
 

 
Author Capozzi, F.; Saviano, N.
Title Neutrino Flavor Conversions in High-Density Astrophysical and Cosmological Environments Type Journal Article
Year 2022 Publication Universe Abbreviated Journal Universe
Volume 8 Issue 2 Pages 94 - 23pp
Keywords (up) astrophysical neutrinos; neutrino oscillations; supernovae; neutron star mergers; early Universe; sterile neutrinos
Abstract Despite being a well understood phenomenon in the context of current terrestrial experiments, neutrino flavor conversions in dense astrophysical environments probably represent one of the most challenging open problems in neutrino physics. Apart from being theoretically interesting, such a problem has several phenomenological implications in cosmology and in astrophysics, including the primordial nucleosynthesis of light elements abundance and other cosmological observables, nucleosynthesis of heavy nuclei, and the explosion of massive stars. In this review, we briefly summarize the state of the art on this topic, focusing on three environments: early Universe, core-collapse supernovae, and compact binary mergers.
Address [Capozzi, Francesco] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest, Paterna 46980, Spain, Email: fcapozzi@ific.uv.es;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000762069300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5146
Permanent link to this record
 

 
Author Bordes, J.; Hong-Mo, C.; Tsun, T.S.
Title A first test of the framed standard model against experiment Type Journal Article
Year 2015 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A
Volume 30 Issue 11 Pages 1550051 - 34pp
Keywords (up) Higgs boson; fermion generations; mixing and neutrino oscillations; mass hierarchy; vielbeins
Abstract The framed standard model (FSM) is obtained from the standard model by incorporating, as field variables, the frame vectors (vielbeins) in internal symmetry space. It gives the standard Higgs boson and 3 generations of quarks and leptons as immediate consequences. It gives moreover a fermion mass matrix of the form: m = mT alpha alpha dagger, where alpha is a vector in generation space independent of the fermion species and rotating with changing scale, which has already been shown to lead, generically, to up-down mixing, neutrino oscillations and mass hierarchy. In this paper, pushing the FSM further, one first derives to 1-loop order the RGE for the rotation of alpha, and then applies it to fit mass and mixing data as a first test of the model. With 7 real adjustable parameters, 18 measured quantities are fitted, most (12) to within experimental error or to better than 0.5 percent, and the rest (6) not far off. (A summary of this fit can be found in Table 2 of this paper.) Two notable features, both generic to FSM, not just specific to the fit, are: (i) that a theta-angle of order unity in the instanton term in QCD would translate via rotation into a Kobayashi-Maskawa phase in the CKM matrix of about the observed magnitude (J similar to 10(-5)), (ii) that it would come out correctly that m(u) < m(d), despite the fact that m(t) >> m(b), m(c) >> m(s). Of the 18 quantities fitted, 12 are deemed independent in the usual formulation of the standard model. In fact, the fit gives a total of 17 independent parameters of the standard model, but 5 of these have not been measured by experiment.
Address [Bordes, Jose] Univ Valencia, Dept Fis Teor, E-46100 Burjassot, Valencia, Spain, Email: jose.m.bordes@uv.es;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-751x ISBN Medium
Area Expedition Conference
Notes WOS:000352992800009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2187
Permanent link to this record
 

 
Author de Salas, P.F.; Gariazzo, S.; Martinez-Mirave, P.; Pastor, S.; Tortola, M.
Title Cosmological radiation density with non-standard neutrino-electron interactions Type Journal Article
Year 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 820 Issue Pages 136508 - 9pp
Keywords (up) Neutrino interactions; Non-standard neutrino interactions; Cosmology; Neutrino oscillations
Abstract Neutrino non-standard interactions (NSI) with electrons are known to alter the picture of neutrino de coupling from the cosmic plasma. NSI modify both flavour oscillations through matter effects, and the annihilation and scattering between neutrinos and electrons and positrons in the thermal plasma. In view of the forthcoming cosmological observations, we perform a precision study of the impact of non universal and flavour-changing NSI on the effective number of neutrinos, Neff. We present the variation of Neff arising from the different NSI parameters and discuss the existing degeneracies among them, from cosmology alone and in relation to the current bounds from terrestrial experiments. Even though cosmology is generally less sensitive to NSI than these experiments, we find that future cosmological data would provide competitive and complementary constraints for some of the couplings and their combinations.
Address [de Salas, Pablo F.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden, Email: pablo.fernandez@fysik.su.se;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000713101800031 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5023
Permanent link to this record
 

 
Author Tortola, M.
Title Status of three-neutrino oscillation parameters Type Journal Article
Year 2013 Publication Fortschritte der Physik-Progress of Physics Abbreviated Journal Fortschritte Phys.-Prog. Phys.
Volume 61 Issue 4-5 Pages 427-440
Keywords (up) Neutrino mass and mixing; neutrino oscillations; solar and atmospheric neutrinos; reactor and accelerator neutrinos
Abstract Here we review the current status of global fits to neutrino oscillation data within the three-flavour framework. In our analysis we include the most recent data from solar and atmospheric neutrino experiments as well as the latest results from the long-baseline accelerator neutrino experiments and the recent measurements of reactor neutrino disappearance reported by Double Chooz, Daya Bay and RENO. We present updated determinations for the two neutrino mass splittings and the three mixing angles responsible for neutrino oscillations that, for the first time, have all been measured with 1 sigma accuracies ranging from 3 to 15%. A weak sensitivity for the CP violating phase is also reported from the global analysis.
Address Univ Valencia, Inst Fis Corpuscular, AHEP Grp, CSIC, Valencia 46071, Spain, Email: mariam@ific.uv.es
Corporate Author Thesis
Publisher Wiley-V C H Verlag Gmbh Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0015-8208 ISBN Medium
Area Expedition Conference
Notes WOS:000317019900005 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1411
Permanent link to this record