|   | 
Details
   web
Records
Author Olmo, G.J.; Rubiera-Garcia, D.
Title Palatini f(R) black holes in nonlinear electrodynamics Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 84 Issue 12 Pages 124059 - 14pp
Keywords (up)
Abstract The electrically charged Born-Infeld black holes in the Palatini formalism for f(R) theories are analyzed. Specifically we study those supported by a theory f(R) = R +/- R(2)/R(P), where R(P) is Planck's curvature. These black holes only differ from their General Relativity counterparts very close to the center but may give rise to different geometrical structures in terms of inner horizons. The nature and strength of the central singularities are also significantly affected. In particular, for the model f(R) = R – R(2)/R(P) the singularity is shifted to a finite radius, r(+), and the Kretschmann scalar diverges only as 1/(r-r(+))(2).
Address [Olmo, Gonzalo J.] Univ Valencia, Ctr Mixto Univ Valencia CSIC, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@csic.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000298666600005 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 878
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.
Title Reissner-Nordstrom black holes in extended Palatini theories Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 86 Issue 4 Pages 044014 - 15pp
Keywords (up)
Abstract We study static, spherically symmetric solutions with an electric field in an extension of general relativity containing a Ricci-squared term and formulated in the Palatini formalism. We find that all the solutions present a central core whose area is proportional to the Planck area times the number of charges. Far from the core, curvature invariants quickly tend to those of the usual Reissner-Nordstrom solution, though the structure of horizons may be different. In fact, besides the structures found in the Reissner-Nordstrom solution of general relativity, we find black hole solutions with just one nondegenerate horizon (Schwarzschild-like) and nonsingular black holes and naked cores. The charge-to-mass ratio of the nonsingular solutions implies that the core matter density is independent of the specific amounts of charge and mass and of order the Planck density. We discuss the physical implications of these results for astrophysical and microscopic black holes, construct the Penrose diagrams of some illustrative cases, and show that the maximal analytical extension of the nonsingular solutions implies a bounce of the radial coordinate.
Address [Olmo, Gonzalo J.] Univ Valencia, Ctr Mixto, CSIC, Dept Fis Teor, E-46100 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000307276200003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1114
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.
Title Nonsingular black holes in quadratic Palatini gravity Type Journal Article
Year 2012 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 72 Issue 8 Pages 2098 - 5pp
Keywords (up)
Abstract We find that if general relativity is modified at the Planck scale by a Ricci-squared term, electrically charged black holes may be nonsingular. These objects concentrate their mass in a microscopic sphere of radius r(core) approximate to N(q)(1/2)l(P)/3, where l(P) is the Planck length and N-q is the number of electric charges. The singularity is avoided if the mass of the object satisfies the condition M-0(2) approximate to m(P)(2)alpha N-3/2(em)q(3)/2, where m(P) is the Planck mass and alpha(em) is the fine-structure constant. For astrophysical black holes this amount of charge is so small that their external horizon almost coincides with their Schwarzschild radius. We work within a first-order (Palatini) approach.
Address [Olmo, Gonzalo J.] Univ Valencia, Ctr Mixto, CSIC, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@csic.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000308239900030 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1138
Permanent link to this record
 

 
Author Martinez-Asencio, J.; Olmo, G.J.; Rubiera-Garcia, D.
Title Black hole formation from a null fluid in extended Palatini gravity Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 86 Issue 10 Pages 104010 - 8pp
Keywords (up)
Abstract We study the formation and perturbation of black holes by null fluxes of neutral matter in a quadratic extension of general relativity formulated a la Palatini. Working in a spherically symmetric space-time, we obtain an exact analytical solution for the metric that extends the usual Vaidya-type solution to this type of theory. We find that the resulting space-time is formally that of a Reissner-Nordstrom black hole but with an effective charge term carrying the wrong sign in front of it. This effective charge is directly related to the luminosity function of the radiation stream. When the ingoing flux vanishes, the charge term disappears and the space-time relaxes to that of a Schwarzschild black hole. We provide two examples that illustrate the formation of a black hole from Minkowski space and the perturbation by a finite pulse of radiation of an existing Schwarzschild black hole.
Address [Martinez-Asencio, Jesus; Olmo, Gonzalo J.] Univ Valencia, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@csic.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000310686900007 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1202
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.
Title Importance of torsion and invariant volumes in Palatini theories of gravity Type Journal Article
Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 88 Issue 8 Pages 084030 - 11pp
Keywords (up)
Abstract We study the field equations of extensions of general relativity formulated within a metric-affine formalism setting torsion to zero (Palatini approach). We find that different (second-order) dynamical equations arise depending on whether torsion is set to zero (i) a priori or (ii) a posteriori, i.e., before or after considering variations of the action. Considering a generic family of Ricci-squared theories, we show that in both cases the connection can be decomposed as the sum of a Levi-Civita connection and terms depending on a vector field. However, while in case (i) this vector field is related to the symmetric part of the connection, in (ii) it comes from the torsion part and, therefore, it vanishes once torsion is completely removed. Moreover, the vanishing of this torsion-related vector field immediately implies the vanishing of the antisymmetric part of the Ricci tensor, which therefore plays no role in the dynamics. Related to this, we find that the Levi-Civita part of the connection is due to the existence of an invariant volume associated with an auxiliary metric h(mu v), which is algebraically related with the physical metric g(mu v).
Address [Olmo, Gonzalo J.] Ctr Mixto Univ Valencia CSIC, Dept Fis Teor, Valencia 46100, Spain, Email: gonzalo.olmo@csic.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000326107300007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1630
Permanent link to this record