|   | 
Details
   web
Records
Author Jimenez, R.; Pena-Garay, C.; Verde, L.
Title Is it possible to explore Peccei-Quinn axions from frequency-dependence radiation dimming? Type Journal Article
Year 2011 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 703 Issue 3 Pages 232-236
Keywords (up) Axion; CF; White dwarf
Abstract We explore how the Peccei-Quinn (PQ) axion parameter space can be constrained by the frequency-dependence dimming of radiation from astrophysical objects. To do so we perform accurate calculations of photon-axion conversion in the presence of a variable magnetic field. We propose several tests where the PQ axion parameter space can be explored with current and future astronomical surveys: the observed spectra of isolated neutron stars, occultations of background objects by white dwarfs and neutron stars, the light-curves of eclipsing binaries containing a white dwarf. We find that the lack of dimming of the light-curve of a detached eclipsing white dwarf binary recently observed, leads to relevant constraints on the photon-axion conversion. Current surveys designed for Earth-like planet searches are well matched to strengthen and improve the constraints on the PQ axion using astrophysical objects radiation dimming.
Address [Jimenez, R; Verde, L] Univ Barcelona IEEC UB, ICREA & ICC, Barcelona 08028, Spain, Email: jimenez@icc.ub.edu
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000295198300005 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 779
Permanent link to this record
 

 
Author Reid, B.A.; Verde, L.; Jimenez, R.; Mena, O.
Title Robust neutrino constraints by combining low redshift observations with the CMB Type Journal Article
Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 01 Issue 1 Pages 003 - 21pp
Keywords (up) cluster counts; cosmological parameters from LSS; neutrino masses from cosmology; cosmological parameters from CMBR
Abstract We illustrate how recently improved low-redshift cosmological measurements can tighten constraints on neutrino properties. In particular we examine the impact of the assumed cosmological model on the constraints. We first consider the new HST H-0 = 74.2 +/- 3.6 measurement by Riess et al. (2009) and the sigma(8)(Omega(m)/0.25)(0.41) = 0.832 +/- 0.033 constraint from Rozo et al. (2009) derived from the SDSS maxBCG Cluster Catalog. In a ACDM model and when combined with WMAP5 constraints, these low-redshift measurements constrain Sigma m(v) < 0.4 eV at the 95% confidence level. This bound does not relax when allowing for the running of the spectral index or for primordial tensor perturbations. When adding also Supernovae and BAO constraints, we obtain a 95% upper limit of Sigma m(v) < 0.3eV. We test the sensitivity of the neutrino mass constraint to the assumed expansion history by both allowing a dark energy equation of state parameter w not equal -1 and by studying a model with coupling between dark energy and dark matter, which allows for variation in w, Omega(k), and dark coupling strength xi. When combining CMB, H-0 and the SDSS LRG halo power spectrum from Reid et al. 2009, we find that in this very general model, Sigma m(v) < 0.51 eV with 95% confidence. If we allow the number of relativistic species N-rel to vary in a ACDM model with Sigma m(v) = 0, we find N-rel = 3.76(-0.68)(+0.63)(+1.38 -1.21) for the 68% and 95% confidence intervals. We also report prior-independent constraints, which are in excellent agreement with the Bayesian constraints.
Address [Reid, Beth A.] Univ Barcelona, Inst Sci Cosmos ICC, E-08028 Barcelona, Spain, Email: beth.ann.reid@gmail.com
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000273314600008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 511
Permanent link to this record
 

 
Author Bellomo, N.; Bellini, E.; Hu, B.; Jimenez, R.; Pena-Garay, C.; Verde, L.
Title Hiding neutrino mass in modified gravity cosmologies Type Journal Article
Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 02 Issue 2 Pages 043 - 12pp
Keywords (up) cosmological neutrinos; modified gravity; neutrino astronomy; neutrino masses from cosmology
Abstract Cosmological observables show a dependence with the neutrino mass, which is partially degenerate with parameters of extended models of gravity. We study and explore this degeneracy in Horndeski generalized scalar-tensor theories of gravity. Using forecasted cosmic microwave background and galaxy power spectrum datasets, we find that a single parameter in the linear regime of the effective theory dominates the correlation with the total neutrino mass. For any given mass, a particular value of this parameter approximately cancels the power suppression due to the neutrino mass at a given redshift. The extent of the cancellation of this degeneracy depends on the cosmological large-scale structure data used at different redshifts. We constrain the parameters and functions of the effective gravity theory and determine the influence of gravity on the determination of the neutrino mass from present and future surveys.
Address [Bellomo, Nicola; Bellini, Emilio; Hu, Bin; Jimenez, Raul; Verde, Licia] Univ Barcelona UB IEEC, ICC, Marti & Franques 1, Barcelona 08028, Spain, Email: nicola.bellomo@icc.ub.edu;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000399455000043 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3078
Permanent link to this record
 

 
Author Jimenez, R.; Kitching, T.; Pena-Garay, C.; Verde, L.
Title Can we measure the neutrino mass hierarchy in the sky? Type Journal Article
Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 05 Issue 5 Pages 035 - 14pp
Keywords (up) cosmological neutrinos; neutrino masses from cosmology; power spectrum; gravitational lensing
Abstract Cosmological probes are steadily reducing the total neutrino mass window, resulting in constraints on the neutrino-mass degeneracy as the most significant outcome. In this work we explore the discovery potential of cosmological probes to constrain the neutrino hierarchy, and point out some subtleties that could yield spurious claims of detection. This has an important implication for next generation of double beta decay experiments, that will be able to achieve a positive signal in the case of degenerate or inverted hierarchy of Majorana neutrinos. We find that cosmological experiments that nearly cover the whole sky could in principle distinguish the neutrino hierarchy by yielding 'substantial' evidence for one scenario over the another, via precise measurements of the shape of the matter power spectrum from large scale structure and weak gravitational lensing.
Address [Jimenez, Raul; Verde, Licia] Univ Barcelona, ICREA, E-08028 Barcelona, Spain, Email: raul.jimenez@icc.ub.edu
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000279490800005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 418
Permanent link to this record
 

 
Author Pena-Garay, C.; Verde, L.; Jimenez, R.
Title Neutrino footprint in large scale structure Type Journal Article
Year 2017 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe
Volume 15 Issue Pages 31-34
Keywords (up) Cosmology; Neutrinos; Large scale structure
Abstract Recent constrains on the sum of neutrino masses inferred by analyzing cosmological data, show that detecting a non-zero neutrino mass is within reach of forthcoming cosmological surveys. Such a measurement will imply a direct determination of the absolute neutrino mass scale. Physically, the measurement relies on constraining the shape of the matter power spectrum below the neutrino free streaming scale: massive neutrinos erase power at these scales. However, detection of a lack of small-scale power from cosmological data could also be due to a host of other effects. It is therefore of paramount importance to validate neutrinos as the source of power suppression at small scales. We show that, independent on hierarchy, neutrinos always show a footprint on large, linear scales; the exact location and properties are fully specified by the measured power suppression (an astrophysical measurement) and atmospheric neutrinos mass splitting (a neutrino oscillation experiment measurement). This feature cannot be easily mimicked by systematic uncertainties in the cosmological data analysis or modifications in the cosmological model. Therefore the measurement of such a feature, up to 1% relative change in the power spectrum for extreme differences in the mass eigenstates mass ratios, is a smoking gun for confirming the determination of the absolute neutrino mass scale from cosmological observations. It also demonstrates the synergy between astrophysics and particle physics experiments.
Address [Verde, Licia; Jimenez, Raul] Univ Barcelona, ICREA, Marti & Franques 1, E-08028 Barcelona, Spain, Email: liciaverde@gmail.com
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-6864 ISBN Medium
Area Expedition Conference
Notes WOS:000401825700003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3138
Permanent link to this record