|   | 
Details
   web
Records
Author Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J.
Title Metric-Palatini gravity unifying local constraints and late-time cosmic acceleration Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 85 Issue 8 Pages 084016 - 5pp
Keywords (up)
Abstract We present a novel approach to modified theories of gravity which consists of adding to the Einstein-Hilbert Lagrangian an f(R) term constructed a la Palatini. Using the respective dynamically equivalent scalar-tensor representation, we show that the theory can pass the Solar System observational constraints even if the scalar field is very light. This implies the existence of a long-range scalar field, which is able to modify the cosmological and galactic dynamics but leaves the Solar System unaffected. We also verify the absence of instabilities in perturbations and provide explicit models which are consistent with local tests and lead to the late-time cosmic acceleration.
Address [Harko, Tiberiu] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China, Email: harko@hkucc.hku.hk;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000302996100011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 996
Permanent link to this record
 

 
Author Capozziello, S.; Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J.
Title Wormholes supported by hybrid metric-Palatini gravity Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 86 Issue 12 Pages 127504 - 5pp
Keywords (up)
Abstract Recently, a modified theory of gravity was presented, which consists of the superposition of the metric Einstein-Hilbert Lagrangian with an f(R) term constructed a la Palatini. The theory possesses extremely interesting features such as predicting the existence of a long-range scalar field, that explains the late-time cosmic acceleration and passes the local tests, even in the presence of a light scalar field. In this brief report, we consider the possibility that wormholes are supported by this hybrid metric-Palatini gravitational theory. We present here the general conditions for wormhole solutions according to the null energy conditions at the throat and find specific examples. In the first solution, we specify the redshift function, the scalar field and choose the potential that simplifies the modified Klein-Gordon equation. This solution is not asymptotically flat and needs to be matched to a vacuum solution. In the second example, by adequately specifying the metric functions and choosing the scalar field, we find an asymptotically flat spacetime.
Address [Capozziello, Salvatore] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy, Email: capozzie@na.infn.it;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000312446600010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1280
Permanent link to this record
 

 
Author Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J.; Rubiera-Garcia, D.
Title Coupling matter in modified Q gravity Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 98 Issue 8 Pages 084043 - 13pp
Keywords (up)
Abstract We present a novel theory of gravity by considering an extension of symmetric teleparallel gravity. This is done by introducing, in the framework of the metric-affine formalism, a new class of theories where the nonmetricity Q is nonminimally coupled to the matter Lagrangian. More specifically, we consider a Lagrangian of the form L similar to f(1)(Q) + f(2)(Q)L-M, where f(1) and f(2) are generic functions of Q, and L-M is the matter Lagrangian. This nonminimal coupling entails the nonconservation of the energy-momentum tensor, and consequently the appearance of an extra force. The formulation of the gravity sector in terms of the Q instead of the curvature may result in subtle improvements of the theory. In the context of nonminimal matter couplings, we are therefore motivated to explore whether the new geometrical formulation in terms of the Q, when implemented also in the matter sector, would allow more universally consistent and viable realizations of the nonminimal coupling. Furthermore, we consider several cosmological applications by presenting the evolution equations and imposing specific functional forms of the functions f(1)(Q) and f(2)(Q), such as power-law and exponential dependencies of the nonminimal couplings. Cosmological solutions are considered in two general classes of models, and found to feature accelerating expansion at late times.
Address [Harko, Tiberiu] Babes Bolyai Univ, Dept Phys, Kogalniceanu St, Cluj Napoca 400084, Romania, Email: t.harko@ucl.ac.uk;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000448458600003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3789
Permanent link to this record
 

 
Author Capozziello, S.; Harko, T.; Lobo, F.S.N.; Olmo, G.J.; Vignolo, S.
Title The Cauchy problem in hybrid metric-Palatini f(X)-gravity Type Journal Article
Year 2014 Publication International Journal of Geometric Methods in Modern Physics Abbreviated Journal Int. J. Geom. Methods Mod. Phys.
Volume 11 Issue 5 Pages 1450042 - 12pp
Keywords (up) Cauchy problem; modified gravity; hybrid metric-Palatini gravity
Abstract The well-formulation and the well-posedness of the Cauchy problem are discussed for hybrid metric-Palatini gravity, a recently proposed modified gravitational theory consisting of adding to the Einstein-Hilbert Lagrangian an f(R)-term constructed a la Palatini. The theory can be recast as a scalar-tensor one predicting the existence of a light long-range scalar field that evades the local Solar System tests and is able to modify galactic and cosmological dynamics, leading to the late-time cosmic acceleration. In this work, adopting generalized harmonic coordinates, we show that the initial value problem can always be well-formulated and, furthermore, can be well-posed depending on the adopted matter sources.
Address [Capozziello, Salvatore] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy, Email: capozzie@na.infn.it;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0219-8878 ISBN Medium
Area Expedition Conference
Notes WOS:000336527100003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1813
Permanent link to this record
 

 
Author Capozziello, S.; Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J.
Title Cosmology of hybrid metric-Palatini f(X)-gravity Type Journal Article
Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue 4 Pages 011 - 25pp
Keywords (up) modified gravity; dark energy theory
Abstract A new class of modified theories of gravity, consisting of the superposition of the metric Einstein-Hilbert Lagrangian with an f(R) term constructed a la Palatini was proposed recently. The dynamically equivalent scalar-tensor representation of the model was also formulated, and it was shown that even if the scalar field is very light, the theory passes the Solar System observational constraints. Therefore the model predicts the existence of a long-range scalar field, modifying the cosmological and galactic dynamics. An explicit model that passes the local tests and leads to cosmic acceleration was also obtained. In the present work, it is shown that the theory can be also formulated in terms of the quantity X equivalent to kappa T-2 + R, where T and R are the traces of the stress-energy and Ricci tensors, respectively. The variable X represents the deviation with respect to the field equation trace of general relativity. The cosmological applications of this hybrid metric-Palatini gravitational theory are also explored, and cosmological solutions coming from the scalar-tensor representation of f(X)-gravity are presented. Criteria to obtain cosmic acceleration are discussed and the field equations are analyzed as a dynamical system. Several classes of dynamical cosmological solutions, depending on the functional form of the effective scalar field potential, describing both accelerating and decelerating Universes are explicitly obtained. Furthermore, the cosmological perturbation equations are derived and applied to uncover the nature of the propagating scalar degree of freedom and the signatures these models predict in the large-scale structure.
Address Univ Naples Federico II, Dipartimento Fis, Naples, Italy, Email: capozzie@na.infn.it;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000318556200011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1444
Permanent link to this record