|   | 
Details
   web
Records
Author Fonseca, R.M.; Malinsky, M.; Porod, W.; Staub, F.
Title Running soft parameters in SUSY models with multiple U(1) gauge factors Type Journal Article
Year 2012 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B
Volume 854 Issue 1 Pages 28-53
Keywords (up)
Abstract We generalize the two-loop renormalization group equations for the parameters of the softly broken SUSY gauge theories given in the literature to the most general case when the gauge group contains more than a single Abelian gauge factor. The complete method is illustrated at two-loop within a specific example and compared to some of the previously proposed partial treatments.
Address [Porod, W; Staub, F] Univ Wurzburg Hubland, Inst Theoret Phys & Astron, D-97074 Wurzburg, Germany, Email: renato.fonseca@ist.utl.pt
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0550-3213 ISBN Medium
Area Expedition Conference
Notes WOS:000296167500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 788
Permanent link to this record
 

 
Author Arbelaez, C.; Fonseca, R.M.; Romao, J.C.; Hirsch, M.
Title Supersymmetric SO(10)-inspired GUTs with sliding scales Type Journal Article
Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 87 Issue 7 Pages 075010 - 19pp
Keywords (up)
Abstract We construct lists of supersymmetric models with extended gauge groups at intermediate steps, all of which are inspired by SO(10) unification. We consider three different kinds of setups: (i) the model has exactly one additional intermediate scale with a left-right (LR) symmetric group; (ii) SO(10) is broken to the LR group via an intermediate Pati-Salam scale; and (iii) the LR group is broken into SU(3)(c) X SU(2)(L) X U(1)(R) X U(1)(B-L), before breaking to the standard model (SM) group. We use sets of conditions, which we call the “sliding mechanism,” which yield unification with the extended gauge group(s) allowed at arbitrary intermediate energy scales. All models thus can have new gauge bosons within the reach of the LHC, in principle. We apply additional conditions, such as perturbative unification, renormalizability and anomaly cancellation and find that, despite these requirements, for the ansatz (i) with only one additional scale still around 50 different variants exist that can have a LR symmetry below 10 TeV. For the more complicated schemes (ii) and (iii) literally thousands of possible variants exist, and for scheme (ii) we have also found variants with very low Pati-Salam scales. We also discuss possible experimental tests of the models from measurements of supersymmetry masses. Assuming mSugra boundary conditions we calculate certain combinations of soft terms, called “invariants,” for the different classes of models. Values for all the invariants can be classified into a small number of sets, which contain information about the class of models and, in principle, the scale of beyond-minimal supersymmetric extension of the Standard Model physics, even in case the extended gauge group is broken at an energy beyond the reach of the LHC.
Address Univ Tecn Lisboa, Dept Fis, P-1049001 Lisbon, Portugal, Email: Carolina.Arbelaez@ist.utl.pt;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000317586900007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1401
Permanent link to this record
 

 
Author Boucenna, S.M.; Fonseca, R.M.; Gonzalez-Canales, F.; Valle, J.W.F.
Title Small neutrino masses and gauge coupling unification Type Journal Article
Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 91 Issue 3 Pages 031702 - 5pp
Keywords (up)
Abstract The physics responsible for gauge coupling unification may also induce small neutrino masses. We propose a novel gauge-mediated radiative seesaw mechanism for calculable neutrino masses. These arise from quantum corrections mediated by new SU(3)(C) circle times SU(3)(L) circle times U(1)(X) (3-3-1) gauge bosons and the physics driving gauge coupling unification. Gauge couplings unify for a 3-3-1 scale in the TeV range, making the model directly testable at the LHC.
Address [Boucenna, Sofiane M.; Fonseca, Renato M.; Gonzalez-Canales, Felix; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: boucenna@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000350208800001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2144
Permanent link to this record
 

 
Author Fonseca, R.M.; Hirsch, M.
Title SU(5)-inspired double beta decay Type Journal Article
Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 92 Issue 1 Pages 015014 - 14pp
Keywords (up)
Abstract The short-range part of the neutrinoless double beta amplitude is generated via the exchange of exotic particles, such as charged scalars, leptoquarks and/or diquarks. In order to give a sizable contribution to the total decay rate, the masses of these exotics should be of the order of (at most) a few TeV. Here, we argue that these exotics could be the “light” (i.e., weak-scale) remnants of some B – L violating variants of SU(5). We show that unification of the standard model gauge couplings, consistent with proton decay limits, can be achieved in such a setup without the need to introduce supersymmetry. Since these nonminimal SU(5)-inspired models violate B – L, they generate Majorana neutrino masses and therefore make it possible to explain neutrino oscillation data. The light colored particles of these models can potentially be observed at the LHC, and it might be possible to probe the origin of the neutrino masses with Delta L = 2 violating signals. As particular realizations of this idea, we present two models, one for each of the two possible tree-level topologies of neutrinoless double beta decay.
Address [Fonseca, Renato M.; Hirsch, Martin] Univ Valencia, AHEP Grp, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: renato.fonseca@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000357860200006 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2300
Permanent link to this record
 

 
Author Fonseca, R.M.
Title On the chirality of the SM and the fermion content of GUTs Type Journal Article
Year 2015 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B
Volume 897 Issue Pages 757-780
Keywords (up)
Abstract The Standard Model (SM) is a chiral theory, where right- and left-handed fermion fields transform differently under the gauge group. Extra fermions, if they do exist, need to be heavy otherwise they would have already been observed. With no complex mechanisms at work, such as confining interactions or extra-dimensions, this can only be achieved if every extra right-handed fermion comes paired with a left-handed one transforming in the same way under the Standard Model gauge group, otherwise the new states would only get a mass after electroweak symmetry breaking, which would necessarily be small (similar to 100 GeV). Such a simple requirement severely constrains the fermion content of Grand Unified Theories (GUTs). It is known for example that three copies of the representations (5) over bar + 10 of SU(5) or three copies of the 16 of SO(10) can reproduce the Standard Model's chirality, but how unique are these arrangements? In a systematic way, this paper looks at the possibility of having non-standard mixtures of fermion GUT representations yielding the correct Standard Model chirality. Family unification is possible with large special unitary groups for example, the 171 representation of SU(19) may decompose as 3(16) + 120 + 3(1) under SO(10).
Address Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, E-46071 Valencia, Spain, Email: renato.fonseca@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0550-3213 ISBN Medium
Area Expedition Conference
Notes WOS:000358623600032 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2328
Permanent link to this record