|   | 
Details
   web
Records
Author Esteve, R.; Toledo, J.F.; Herrero, V.; Simon, A.; Monrabal, F.; Alvarez, V.; Rodriguez, J.; Querol, M.; Ballester, F.
Title The Event Detection System in the NEXT-White Detector Type Journal Article
Year 2021 Publication Sensors Abbreviated Journal Sensors
Volume 21 Issue 2 Pages 673 - 18pp
Keywords (down) xenon TPC; trigger concepts; data acquisition circuits; FPGA
Abstract This article describes the event detection system of the NEXT-White detector, a 5 kg high pressure xenon TPC with electroluminescent amplification, located in the Laboratorio Subterraneo de Canfranc (LSC), Spain. The detector is based on a plane of photomultipliers (PMTs) for energy measurements and a silicon photomultiplier (SiPM) tracking plane for offline topological event filtering. The event detection system, based on the SRS-ATCA data acquisition system developed in the framework of the CERN RD51 collaboration, has been designed to detect multiple events based on online PMT signal energy measurements and a coincidence-detection algorithm. Implemented on FPGA, the system has been successfully running and evolving during NEXT-White operation. The event detection system brings some relevant and new functionalities in the field. A distributed double event processor has been implemented to detect simultaneously two different types of events thus allowing simultaneous calibration and physics runs. This special feature provides constant monitoring of the detector conditions, being especially relevant to the lifetime and geometrical map computations which are needed to correct high-energy physics events. Other features, like primary scintillation event rejection, or a double buffer associated with the type of event being searched, help reduce the unnecessary data throughput thus minimizing dead time and improving trigger efficiency.
Address [Esteve Bosch, Raul; Toledo Alarcon, Jose F.; Herrero Bosch, Vicente; Alvarez Puerta, Vicente; Rodriguez Samaniego, Javier; Ballester Merelo, Francisco] Univ Politecn Valencia, CSIC, Inst Instrumentac Imagen Mol I3M, Ctr Mixto, Camino Vera S-N, Valencia 46022, Spain, Email: rauesbos@eln.upv.es;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000611719600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4693
Permanent link to this record
 

 
Author Candela-Juan, C.; Vijande, J.; Garcia-Martinez, T.; Niatsetski, Y.; Nauta, G.; Schuurman, J.; Ouhib, Z.; Ballester, F.; Perez-Calatayud, J.
Title Comparison and uncertainty evaluation of different calibration protocols and ionization chambers for low-energy surface brachytherapy dosimetry Type Journal Article
Year 2015 Publication Medical Physics Abbreviated Journal Med. Phys.
Volume 42 Issue 8 Pages 4954-4964
Keywords (down) x-ray beams; electronic brachytherapy; surface applicators; dosimetry; uncertainty
Abstract Purpose: A surface electronic brachytherapy (EBT) device is in fact an x-ray source collimated with specific applicators. Low-energy (<100 kVp) x-ray beam dosimetry faces several challenges that need to be addressed. A number of calibration protocols have been published for x-ray beam dosimetry. The media in which measurements are performed are the fundamental difference between them. The aim of this study was to evaluate the surface dose rate of a low-energy x-ray source with small field applicators using different calibration standards and different small-volume ionization chambers, comparing the values and uncertainties of each methodology. Methods: The surface dose rate of the EBT unit Esteya (Elekta Brachytherapy, The Netherlands), a 69.5 kVp x-ray source with applicators of 10, 15, 20, 25, and 30 mm diameter, was evaluated using the AAPM TG-61 (based on air kerma) and International Atomic Energy Agency (IAEA) TRS-398 (based on absorbed dose to water) dosimetry protocols for low-energy photon beams. A plane parallel T34013 ionization chamber (PTW Freiburg, Germany) calibrated in terms of both absorbed dose to water and air kerma was used to compare the two dosimetry protocols. Another PTW chamber of the same model was used to evaluate the reproducibility between these chambers. Measurements were also performed with two different Exradin A20 (Standard Imaging, Inc., Middleton, WI) chambers calibrated in terms of air kerma. Results: Differences between surface dose rates measured in air and in water using the T34013 chamber range from 1.6% to 3.3%. No field size dependence has been observed. Differences are below 3.7% when measurements with the A20 and the T34013 chambers calibrated in air are compared. Estimated uncertainty (with coverage factor k = 1) for the T34013 chamber calibrated in water is 2.2%-2.4%, whereas it increases to 2.5% and 2.7% for the A20 and T34013 chambers calibrated in air, respectively. The output factors, measured with the PTW chambers, differ by less than 1.1% for any applicator size when compared to the output factors that were measured with the A20 chamber. Conclusions: Measurements using both dosimetric protocols are consistent, once the overall uncertainties are considered. There is also consistency between measurements performed with both chambers calibrated in air. Both the T34013 and A20 chambers have negligible stem effect. Any x-ray surface brachytherapy system, including Esteya, can be characterized using either one of these calibration protocols and ionization chambers. Having less correction factors, lower uncertainty, and based on measurements, performed in closer to clinical conditions, the TRS-398 protocol seems to be the preferred option.
Address [Candela-Juan, C.; Perez-Calatayud, J.] La Fe Univ, Dept Radiat Oncol, Valencia 46026, Spain, Email: ccanjuan@gmail.com
Corporate Author Thesis
Publisher Amer Assoc Physicists Medicine Amer Inst Physics Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-2405 ISBN Medium
Area Expedition Conference
Notes WOS:000358933000051 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2323
Permanent link to this record
 

 
Author Gimenez-Alventosa, V.; Gimenez, V.; Ballester, F.; Vijande, J.; Andreo, P.
Title Monte Carlo calculation of beam quality correction factors for PTW cylindrical ionization chambers in photon beams Type Journal Article
Year 2020 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 65 Issue 20 Pages 205005 - 11pp
Keywords (down) TRS 398; Monte Carlo; dosimetry; ionization chambers; MV photon beams
Abstract The beam quality correction factork(Q)for megavoltage photon beams has been calculated for eight PTW (Freiburg, Germany) ionization chambers (Farmer chambers PTW30010, PTW30011, PTW30012, and PTW30013, Semiflex 3D chambers PTW31021, PTW31010, and PTW31013, and the PinPoint 3D chamber PTW31016). Simulations performed on the widely used NE-2571 ionization chamber have been used to benchmark the results. The Monte Carlo code PENELOPE/penEasy was used to calculate the absorbed dose to a point in water and the absorbed dose to the active air volume of the chambers for photon beams in the range 4 to 24 MV. Of the nine ionization chambers analysed, only five are included in the current version of the International Code of Practice for dosimetry based on standards of absorbed dose to water (IAEA TRS 398). The values reported in this work agree with those in the literature within the uncertainty estimates and are to be included in the average values of the data obtained by different working groups for the forthcoming update of TRS 398.
Address [Gimenez-Alventosa, Vicent] Univ Politecn Valencia, CSIC, Ctr Mixto, Inst Instrumentac Imagen Mol I3M, Valencia, Spain, Email: javier.vijande@uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:000576070000001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4556
Permanent link to this record
 

 
Author Gimenez-Alventosa, V.; Gimenez, V.; Ballester, F.; Vijande, J.; Andreo, P.
Title Correction factors for ionization chamber measurements with the 'Valencia' and 'large field Valencia' brachytherapy applicators Type Journal Article
Year 2018 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 63 Issue 12 Pages 125004 - 10pp
Keywords (down) skin applicator; Valencia applicator; large field Valencia applicator; HDR brachytherap; brachytherapy dosimetry; Monte Carlo
Abstract Treatment of small skin lesions using HDR brachytherapy applicators is a widely used technique. The shielded applicators currently available in clinical practice are based on a tungsten-alloy cup that collimates the source-emitted radiation into a small region, hence protecting nearby tissues. The goal of this manuscript is to evaluate the correction factors required for dose measurements with a plane-parallel ionization chamber typically used in clinical brachytherapy for the 'Valencia' and 'large field Valencia' shielded applicators. Monte Carlo simulations have been performed using the PENELOPE-2014 system to determine the absorbed dose deposited in a water phantom and in the chamber active volume with a Type A uncertainty of the order of 0.1%. The average energies of the photon spectra arriving at the surface of the water phantom differ by approximately 10%, being 384 keV for the 'Valencia' and 343 keV for the 'large field Valencia'. The ionization chamber correction factors have been obtained for both applicators using three methods, their values depending on the applicator being considered. Using a depth-independent global chamber perturbation correction factor and no shift of the effective point of measurement yields depth-dose differences of up to 1% for the 'Valencia' applicator. Calculations using a depth-dependent global perturbation factor, or a shift of the effective point of measurement combined with a constant partial perturbation factor, result in differences of about 0.1% for both applicators. The results emphasize the relevance of carrying out detailed Monte Carlo studies for each shielded brachytherapy applicator and ionization chamber.
Address [Gimenez-Alventosa, V.] Univ Politecn Valencia, CSIC, Ctr Mixto, Inst Instrumentac Imagen Mol I3M, E-46022 Valencia, Spain, Email: Javier.vijande@uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:000434682500004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3609
Permanent link to this record
 

 
Author Candela-Juan, C.; Niatsetski, Y.; van der Laarse, R.; Granero, D.; Ballester, F.; Perez-Calatayud, J.; Vijande, J.
Title Design and characterization of a new high-dose-rate brachytherapy Valencia applicator for larger skin lesions Type Journal Article
Year 2016 Publication Medical Physics Abbreviated Journal Med. Phys.
Volume 43 Issue 4 Pages 1639-1648
Keywords (down) skin applicator; Valencia applicator; HDR brachytherapy; dosimetry; Monte Carlo
Abstract Purpose: The aims of this study were (i) to design a new high-dose-rate (HDR) brachytherapy applicator for treating surface lesions with planning target volumes larger than 3 cm in diameter and up to 5 cm in size, using the microSelectron-HDR or Flexitron afterloader (Elekta Brachytherapy) with a Ir-192 source; (ii) to calculate by means of the Monte Carlo (MC) method the dose distribution for the new applicator when it is placed against a water phantom; and (iii) to validate experimentally the dose distributions in water. Methods: The PENELOPE2008 MC code was used to optimize dwell positions and dwell times. Next, the dose distribution in a water phantom and the leakage dose distribution around the applicator were calculated. Finally, MC data were validated experimentally for a 192Ir mHDR-v2 source by measuring (i) dose distributions with radiochromic EBT3 films (ISP); (ii) percentage depth-dose (PDD) curve with the parallel-plate ionization chamber Advanced Markus (PTW); and (iii) absolute dose rate with EBT3 films and the PinPoint T31016 (PTW) ionization chamber. Results: The new applicator is made of tungsten alloy (Densimet) and consists of a set of interchangeable collimators. Three catheters are used to allocate the source at prefixed dwell positions with preset weights to produce a homogenous dose distribution at the typical prescription depth of 3 mm in water. The same plan is used for all available collimators. PDD, absolute dose rate per unit of air kerma strength, and off-axis profiles in a cylindrical water phantom are reported. These data can be used for treatment planning. Leakage around the applicator was also scored. The dose distributions, PDD, and absolute dose rate calculated agree within experimental uncertainties with the doses measured: differences of MC data with chamber measurements are up to 0.8% and with radiochromic films are up to 3.5%. Conclusions: The new applicator and the dosimetric data provided here will be a valuable tool in clinical practice, making treatment of large skin lesions simpler, faster, and safer. Also the dose to surrounding healthy tissues is minimal.
Address [Candela-Juan, C.; Perez-Calatayud, J.] La Fe Univ & Polytech Hosp, Dept Radiat Oncol, Valencia 46026, Spain, Email: ccanjuan@gmail.com
Corporate Author Thesis
Publisher Amer Assoc Physicists Medicine Amer Inst Physics Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-2405 ISBN Medium
Area Expedition Conference
Notes WOS:000373711000007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2620
Permanent link to this record