|   | 
Details
   web
Records
Author Beltran Jimenez, J.; de Andres, D.; Delhom, A.
Title Anisotropic deformations in a class of projectively-invariant metric-affine theories of gravity Type Journal Article
Year 2020 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 37 Issue 22 Pages 225013 - 25pp
Keywords (up) alternative theories of gravity; metric-affine gravity; anisotropic solutions
Abstract Among the general class of metric-affine theories of gravity, there is a special class conformed by those endowed with a projective symmetry. Perhaps the simplest manner to realise this symmetry is by constructing the action in terms of the symmetric part of the Ricci tensor. In these theories, the connection can be solved algebraically in terms of a metric that relates to the spacetime metric by means of the so-called deformation matrix that is given in terms of the matter fields. In most phenomenological applications, this deformation matrix is assumed to inherit the symmetries of the matter sector so that in the presence of an isotropic energy-momentum tensor, it respects isotropy. In this work we discuss this condition and, in particular, we show how the deformation matrix can be anisotropic even in the presence of isotropic sources due to the non-linear nature of the equations. Remarkably, we find that Eddington-inspired-Born-Infeld (EiBI) theories do not admit anisotropic deformations, but more general theories do. However, we find that the anisotropic branches of solutions are generally prone to a pathological physical behaviour.
Address [Jimenez, Jose Beltran] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain, Email: jose.beltran@usal.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:000580878200001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4576
Permanent link to this record
 

 
Author Arrechea, J.; Delhom, A.; Jimenez-Cano, A.
Title Inconsistencies in four-dimensional Einstein-Gauss-Bonnet gravity Type Journal Article
Year 2021 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C
Volume 45 Issue 1 Pages 013107 - 8pp
Keywords (up) alternative theories of gravity; singularities; Einstein-Gauss-Bonnet
Abstract We attempt to clarify several aspects concerning the recently presented four-dimensional Einstein-Gauss-Bonnet gravity. We argue that the limiting procedure outlined in [Phys. Rev. Lett. 124, 081301 (2020)] generally involves ill-defined terms in the four dimensional field equations. Potential ways to circumvent this issue are discussed, alongside remarks regarding specific solutions of the theory. We prove that, although linear perturbations are well behaved around maximally symmetric backgrounds, the equations for second-order perturbations are ill-defined even around a Minkowskian background. Additionally, we perform a detailed analysis of the spherically symmetric solutions and find that the central curvature singularity can be reached within a finite proper time.
Address [Arrechea, Julio] CSIC, Inst Astrofis Andalucia, Granada, Spain, Email: arrechea@iaa.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1674-1137 ISBN Medium
Area Expedition Conference
Notes WOS:000606026400001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4676
Permanent link to this record
 

 
Author Beltran Jimenez, J.; Heisenberg, L.; Olmo, G.J.; Rubiera-Garcia, D.
Title On gravitational waves in Born-Infeld inspired non-singular cosmologies Type Journal Article
Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 10 Issue 10 Pages 029 - 23pp
Keywords (up) alternatives to inflation; modified gravity; physics of the early universe; primordial gravitational waves (theory)
Abstract We study the evolution of gravitational waves for non-singular cosmological solutions within the framework of Born-Infeld inspired gravity theories, with special emphasis on the Eddington-inspired Born-Infeld theory. We review the existence of two types of non-singular cosmologies, namely bouncing and asymptotically Minkowski solutions, from a perspective that makes their features more apparent. We study in detail the propagation of gravitational waves near these non-singular solutions and carefully discuss the origin and severity of the instabilities and strong coupling problems that appear. We also investigate the role of the adiabatic sound speed of the matter sector in the regularisation of the gravitational waves evolution. We extend our analysis to more general Born-Infeld inspired theories where analogous solutions are found. As a general conclusion, we obtain that the bouncing solutions are generally more prone to instabilities, while the asymptotically Minkowski solutions can be rendered stable, making them appealing models for the early universe.
Address [Beltran Jimenez, Jose] Univ Toulon & Var, Aix Marseille Univ, CNRS, CPT, Marseille, France, Email: jose.beltran@uam.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000413332400002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3337
Permanent link to this record
 

 
Author Galli, P.; Goldstein, K.; Katmadas, S.; Perz, J.
Title First-order flows and stabilisation equations for non-BPS extremal black holes Type Journal Article
Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages 070 - 28pp
Keywords (up) Black Holes in String Theory; Supergravity Models
Abstract We derive a generalised form of flow equations for extremal static and rotating non-BPS black holes in four-dimensional ungauged N = 2 supergravity coupled to vector multiplets. For particular charge vectors, we give stabilisation equations for the scalars, analogous to the BPS case, describing full known solutions. Based on this, we propose a generic ansatz for the stabilisation equations, which surprisingly includes ratios of harmonic functions.
Address [Galli, P] Univ Valencia, Dept Fis Teor, E-46100 Burjassot, Valencia, Spain, Email: Pietro.Galli@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000293136500070 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 746
Permanent link to this record
 

 
Author Galli, P.; Goldstein, K.; Perz, J.
Title On anharmonic stabilisation equations for black holes Type Journal Article
Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 036 - 7pp
Keywords (up) Black Holes in String Theory; Supergravity Models
Abstract We investigate the stabilisation equations for sufficiently general, yet regular, extremal (supersymmetric and non-supersymmetric) and non-extremal black holes in four-dimensional N = 2 supergravity using both the H-FGK approach and a generalisation of Denef's formalism. By an explicit calculation we demonstrate that the equations necessarily contain an anharmonic part, even in the static, spherically symmetric and asymptotically flat case.
Address Univ Valencia, Dept Fis Teor, E-46100 Burjassot, Valencia, Spain, Email: Pietro.Galli@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000317521200036 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1417
Permanent link to this record
 

 
Author Creminelli, P.; Loayza, N.; Serra, F.; Trincherini, E.; Trombetta, L.G.
Title Hairy black-holes in shift-symmetric theories Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 045 - 24pp
Keywords (up) Black Holes; Classical Theories of Gravity
Abstract Scalar hair of black holes in theories with a shift symmetry are constrained by the no-hair theorem of Hui and Nicolis, assuming spherical symmetry, time-independence of the scalar field and asymptotic flatness. The most studied counterexample is a linear coupling of the scalar with the Gauss-Bonnet invariant. However, in this case the norm of the shift-symmetry current J(2) diverges at the horizon casting doubts on whether the solution is physically sound. We show that this is not an issue since J(2) is not a scalar quantity, since J(mu) is not a diffinvariant current in the presence of Gauss-Bonnet. The same theory can be written in Horndeski form with a non-analytic function G(5)similar to log X . In this case the shift-symmetry current is diff-invariant, but contains powers of X in the denominator, so that its divergence at the horizon is again immaterial. We confirm that other hairy solutions in the presence of non-analytic Horndeski functions are pathological, featuring divergences of physical quantities as soon as one departs from time-independence and spherical symmetry. We generalise the no-hair theorem to Beyond Horndeski and DHOST theories, showing that the coupling with Gauss-Bonnet is necessary to have hair.
Address [Creminelli, Paolo] Abdus Salaam Int Ctr Theoret Phys, Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy, Email: creminel@ictp.it;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000562728200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4515
Permanent link to this record
 

 
Author Olmo, G.J.; Rosa, J.L.; Rubiera-Garcia, D.; Saez-Chillon Gomez, D.
Title Shadows and photon rings of regular black holes and geonic horizonless compact objects Type Journal Article
Year 2023 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 40 Issue 17 Pages 174002 - 37pp
Keywords (up) black holes; compact objects; photon rings; shadows; metric-affine gravity; Born-Infeld gravity; regular solutions
Abstract The optical appearance of a body compact enough to feature an unstable bound orbit, when surrounded by an accretion disk, is expected to be dominated by a luminous ring of radiation enclosing a central brightness depression typically known as the shadow. Despite observational limitations, the rough details of this picture have been now confirmed by the results of the Event Horizon Telescope (EHT) Collaboration on the imaging of the M87 and Milky Way supermassive central objects. However, the precise characterization of both features-ring and shadow-depends on the interaction between the background geometry and the accretion disk, thus being a fertile playground to test our theories on the nature of compact objects and the gravitational field itself in the strong-field regime. In this work we use both features in order to test a continuous family of solutions interpolating between regular black holes and horizonless compact objects, which arise within the Eddington-inspired Born-Infeld theory of gravity, a viable extension of Einstein's general relativity (GR). To this end we consider seven distinctive classes of such configurations (five black holes and two traversable wormholes) and study their optical appearances under illumination by a geometrically and optically thin accretion disk, emitting monochromatically with three analytic intensity profiles previously suggested in the literature. We build such images and consider the sub-ring structure created by light rays crossing the disk more than once and existing on top of the main ring of radiation. We discuss in detail the modifications as compared to their GR counterparts, the Lyapunov exponents of unstable nearly-bound orbits, as well as the differences between black hole and traversable wormholes for the three intensity profiles. In addition we use the claim by the EHT Collaboration on the radius of the bright ring acting (under proper calibrations) as a proxy for the radius of the shadow itself to explore the parameter space of our solutions compatible with such a result.
Address [Olmo, Gonzalo J.] Univ Valencia, Ctr Mixto Univ Valencia, Dept Fis Teor, CSIC, Burjassot 46100, Valencia, Spain, Email: drubiera@ucm.es
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:001043720300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5600
Permanent link to this record
 

 
Author Galli, P.; Meessen, P.; Ortin, T.
Title The Freudenthal gauge symmetry of the black holes of N=2, d=4 supergravity Type Journal Article
Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 011 - 15pp
Keywords (up) Black Holes; String Duality; Gauge Symmetry; Supergravity Models
Abstract We show that the representation of black-hole solutions in terms of the variables H-M which are harmonic functions in the supersymmetric case is non-unique due to the existence of a local symmetry in the effective action. This symmetry is a continuous (and local) generalization of the discrete Freudenthal transformations initially introduced for the black-hole charges and can be used to rewrite the physical fields of a solution in terms of entirely different-looking functions.
Address [Galli, Pietro] Univ Valencia, Dept Fis Teor, E-46100 Burjassot, Valencia, Spain, Email: Pietro.Galli@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000321374400011 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1555
Permanent link to this record
 

 
Author Galli, P.; Ortin, T.; Perz, J.; Shahbazi, C.S.
Title From supersymmetric to non-supersymmetric black holes Type Journal Article
Year 2012 Publication Fortschritte der Physik-Progress of Physics Abbreviated Journal Fortschritte Phys.-Prog. Phys.
Volume 60 Issue 9-10 Pages 1026-1029
Keywords (up) Black holes; supergravity
Abstract Methods similar to those used for obtaining supersymmetric black hole solutions can be employed to find also non-supersymmetric solutions. We briefly review some of them, with the emphasis on the non-extremal deformation ansatz of [1].
Address [Ortin, Tomas; Perz, Jan; Shahbazi, C. S.] Inst Fis Teor UAM CSIC, Madrid 28049, Spain, Email: Pietro.Galli@ific.uv.es;
Corporate Author Thesis
Publisher Wiley-V C H Verlag Gmbh Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0015-8208 ISBN Medium
Area Expedition Conference
Notes WOS:000308301500012 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1151
Permanent link to this record
 

 
Author Beltran Jimenez, J.; Heisenberg, L.; Olmo, G.J.; Rubiera-Garcia, D.
Title Born-Infeld inspired modifications of gravity Type Journal Article
Year 2018 Publication Physics Reports Abbreviated Journal Phys. Rep.
Volume 727 Issue Pages 1-129
Keywords (up) Born-Infeld gravity; Astrophysics; Black holes; Cosmology; Early universe; Compact objects; Singularities
Abstract General Relativity has shown an outstanding observational success in the scales where it has been directly tested. However, modifications have been intensively explored in the regimes where it seems either incomplete or signals its own limit of validity. In particular, the breakdown of unitarity near the Planck scale strongly suggests that General Relativity needs to be modified at high energies and quantum gravity effects are expected to be important. This is related to the existence of spacetime singularities when the solutions of General Relativity are extrapolated to regimes where curvatures are large. In this sense, Born-Infeld inspired modifications of gravity have shown an extraordinary ability to regularise the gravitational dynamics, leading to non-singular cosmologies and regular black hole spacetimes in a very robust manner and without resorting to quantum gravity effects. This has boosted the interest in these theories in applications to stellar structure, compact objects, inflationary scenarios, cosmological singularities, and black hole and wormhole physics, among others. We review the motivations, various formulations, and main results achieved within these theories, including their observational viability, and provide an overview of current open problems and future research opportunities.
Address [Beltran Jimenez, Jose] Univ Autonoma Madrid, CSIC, Inst Fis Teor, E-28049 Madrid, Spain, Email: jose.beltran@uam.es;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-1573 ISBN Medium
Area Expedition Conference
Notes WOS:000425482900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3497
Permanent link to this record