toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Li, X.Q.; Lu, J.; Pich, A. url  doi
openurl 
  Title Bs,d(0) -> l(+)l(-) decays in the aligned two-Higgs-doublet model Type Journal Article
  Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue (down) 6 Pages 022 - 39pp  
  Keywords Higgs Physics; Rare Decays; Beyond Standard Model; B-Physics  
  Abstract The rare decays B-s,d(0) -> l(+)l(-) are analyzed within the general framework of the aligned two-Higgs doublet model. We present a complete one-loop calculation of the relevant short-distance Wilson coefficients, giving a detailed technical summary of our results and comparing them with previous calculations performed in particular limits or approximations. We investigate the impact of various model parameters on the branching ratios and study the phenomenological constraints imposed by present data.  
  Address [Li, Xin-Qiang] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Hubei, Peoples R China, Email: xqli@itp.ac.cn;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000338520600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1855  
Permanent link to this record
 

 
Author Aguilar, A.C.; Binosi, D.; Ibañez, D.; Papavassiliou, J. url  doi
openurl 
  Title New method for determining the quark-gluon vertex Type Journal Article
  Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 90 Issue (down) 6 Pages 065027 - 26pp  
  Keywords  
  Abstract We present a novel nonperturbative approach for calculating the form factors of the quark-gluon vertex in terms of an unknown three-point function, in the Landau gauge. The key ingredient of this method is the exact all-order relation connecting the conventional quark-gluon vertex with the corresponding vertex of the background field method, which is Abelian-like. When this latter relation is combined with the standard gauge technique, supplemented by a crucial set of transverse Ward identities, it allows the approximate determination of the nonperturbative behavior of all 12 form factors comprising the quark-gluon vertex, for arbitrary values of the momenta. The actual implementation of this procedure is carried out in the Landau gauge, in order to make contact with the results of lattice simulations performed in this particular gauge. The most demanding technical aspect involves the approximate calculation of the components of the aforementioned (fully dressed) three-point function, using lattice data as input for the gluon propagators appearing in its diagrammatic expansion. The numerical evaluation of the relevant form factors in three special kinematical configurations (soft-gluon and quark symmetric limit, zero quark momentum) is carried out in detail, finding qualitative agreement with the available lattice data. Most notably, a concrete mechanism is proposed for explaining the puzzling divergence of one of these form factors observed in lattice simulations.  
  Address [Aguilar, A. C.] Univ Estadual Campinas, UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Sao Paulo, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000342147700012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1932  
Permanent link to this record
 

 
Author Barranco, L.; Boubekeur, L.; Mena, O. url  doi
openurl 
  Title Model-independent fit to Planck and BICEP2 data Type Journal Article
  Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 90 Issue (down) 6 Pages 063007 - 7pp  
  Keywords  
  Abstract Inflation is the leading theory to describe elegantly the initial conditions that led to structure formation in our Universe. In this paper, we present a novel phenomenological fit to the Planck, WMAP polarization (WP) and the BICEP2 data sets using an alternative parametrization. Instead of starting from inflationary potentials and computing the inflationary observables, we use a phenomenological parametrization due to Mukhanov, describing inflation by an effective equation of state, in terms of the number of e-folds and two phenomenological parameters alpha and beta. Within such a parametrization, which captures the different inflationary models in a model-independent way, the values of the scalar spectral index n(s), its running and the tensor-to-scalar ratio r are predicted, given a set of parameters (alpha, beta). We perform a Markov Chain Monte Carlo analysis of these parameters, and we show that the combined analysis of Planck and WP data favors the Starobinsky and Higgs inflation scenarios. Assuming that the BICEP2 signal is not entirely due to foregrounds, the addition of this last data set prefers instead the phi(2) chaotic models. The constraint we get from Planck and WP data alone on the derived tensor-to-scalar ratio is r < 0.18 at 95% C.L., value which is consistent with the one quoted from the BICEP2 Collaboration analysis, r = 0.16(-0.05)(+0-06), after foreground subtraction. This is not necessarily at odds with the 2 sigma tension found between Planck and BICEP2 measurements when analyzing data in terms of the usual n(s) and r parameters, given that the parametrization used here, for the preferred value n(s) similar or equal to 0.96, allows only for a restricted parameter space in the usual (n(s), r) plane.  
  Address [Barranco, Laura; Boubekeur, Lotfi; Mena, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000342128700002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1933  
Permanent link to this record
 

 
Author Hernandez, P.; Kekic, M.; Lopez-Pavon, J. url  doi
openurl 
  Title N_eff in low-scale seesaw models versus the lightest neutrino mass Type Journal Article
  Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 90 Issue (down) 6 Pages 065033 - 12pp  
  Keywords  
  Abstract We evaluate the contribution to N_eff of the extra sterile states in low-scale type I seesaw models (with three extra sterile states). We explore the full parameter space and find that at least two of the heavy states always reach thermalization in the early Universe, while the third one might not thermalize provided the lightest neutrino mass is below O(10(-3) eV). Constraints from cosmology therefore severely restrict the spectra of heavy states in the range 1 eV-100 MeV. The implications for neutrinoless double beta decay are also discussed.  
  Address [Hernandez, P.; Kekic, M.] Univ Valencia, IFIC CSIC, E-46071 Valencia, Spain, Email: m.pilar.hernandez@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000344108100004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2001  
Permanent link to this record
 

 
Author Farzan, Y.; Palomares-Ruiz, S. url  doi
openurl 
  Title Dips in the diffuse supernova neutrino background Type Journal Article
  Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 06 Issue (down) 6 Pages 014 - 21pp  
  Keywords dark matter theory; supernova neutrinos; cosmological neutrinos  
  Abstract Scalar (fermion) dark matter with mass in the MeV range coupled to ordinary neutrinos and another fermion (scalar) is motivated by scenarios that establish a link between radiatively generated neutrino masses and the dark matter relic density. With such a coupling, cosmic supernova neutrinos, on their way to us, could resonantly interact with the background (lark matter particles, giving rise to a dip in their redshift-integrated spectra. Current and future neutrino detectors, such as Super-Kamiokande. LENA and HyperKamiokande, could be able to detect this distortion.  
  Address [Farzan, Yasaman] Inst Res Fundamental Sci IPM, Sch Phys, Tehran, Iran, Email: yasaman@theory.ipm.ac.ir;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000346407200014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2046  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva