Brambilla, N. et al, & Pich, A. (2014). QCD and strongly coupled gauge theories: challenges and perspectives. Eur. Phys. J. C, 74(10), 2981–241pp.
Abstract: We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.
|
Eberhardt, O., Miralles, V., & Pich, A. (2021). Constraints on coloured scalars from global fits. J. High Energy Phys., 10(10), 123–23pp.
Abstract: We consider a simple extension of the electroweak theory, incorporating one SU(2)(L) doublet of colour-octet scalars with Yukawa couplings satisfying the principle of minimal flavour violation. Using the HEPfit package, we perform a global fit to the available data, including all relevant theoretical constraints, and extract the current bounds on the model parameters. Coloured scalars with masses below 1.05 TeV are already excluded, provided they are not fermiophobic. The mass splittings among the different (charged and CP-even and CP-odd neutral) scalars are restricted to be smaller than 20 GeV. Moreover, for scalar masses smaller than 1.5 TeV, the Yukawa coupling of the coloured scalar multiplet to the top quark cannot exceed the one of the SM Higgs doublet by more than 80%. These conclusions are quite generic and apply in more general frameworks (without fine tunings). The theoretical requirements of perturbative unitarity and vacuum stability enforce relevant constraints on the quartic scalar potential parameters that are not yet experimentally tested.
|
Gonzalez-Alonso, M., Pich, A., & Prades, J. (2010). Pinched weights and duality violation in QCD sum rules: A critical analysis. Phys. Rev. D, 82(1), 014019–7pp.
Abstract: We analyze the so-called pinched weights, that are generally thought to reduce the violation of quarkhadron duality in finite-energy sum rules. After showing how this is not true in general, we explain how to address this question for the left-right correlator and any particular pinched weight, taking advantage of our previous work [1], where the possible high-energy behavior of the left-right spectral function was studied. In particular, we show that the use of pinched weights allows to determine with high accuracy the dimension six and eight contributions in the operator-product expansion, O-6 = (-4.3(-0.7)(+0.9)) x 10(-3) GeV6 and O-8 = (-7.2(-5.3)(+4.2)) x 10(-3) GeV8.
|
Cirigliano, V., Ecker, G., Neufeld, H., Pich, A., & Portoles, J. (2012). Kaon decays in the standard model. Rev. Mod. Phys., 84(1), 399–447.
Abstract: A comprehensive overview of kaon decays is presented. The standard model predictions are discussed in detail, covering both the underlying short-distance electroweak dynamics and the important interplay of QCD at long distances. Chiral perturbation theory provides a universal framework for treating leptonic, semileptonic, and nonleptonic decays including rare and radiative modes. All allowed decay modes with branching ratios of at least 10 (11) are analyzed. Some decays with even smaller rates are also included. Decays that are strictly forbidden in the standard model are not considered in this review. The present experimental status and the prospects for future improvements are reviewed.
|
Celis, A., Jung, M., Li, X. Q., & Pich, A. (2013). Sensitivity to charged scalars in B -> D-(*)tau nu(tau) and B -> tau nu(tau) decays. J. High Energy Phys., 01(1), 054–27pp.
Abstract: We analyze the recent experimental evidence for an excess of tau-lepton production in several exclusive semileptonic B-meson decays in the context of two-Higgs-doublet models. These decay modes are sensitive to the exchange of charged scalars and constrain strongly their Yukawa interactions. While the usual Type-II scenario cannot accommodate the recent BaBar data, this is possible within more general models in which the charged-scalar couplings to up-type quarks are not as suppressed. Both the B -> D-(*)tau nu(tau) and the B -> tau nu(tau) data can be fitted within the framework of the Aligned Two-Higgs-Doublet Model, but the resulting parameter ranges are in conflict with the constraints from leptonic charm decays. This could indicate a departure from the family universality of the Yukawa couplings, beyond their characteristic fermion mass dependence. We discuss several new observables that are sensitive to a hypothetical charged-scalar contribution, demonstrating that they are well suited to distinguish between different scenarios of new physics in the scalar sector, and also between this group and models with different Dirac structures; their experimental study would therefore shed light on the relevance of scalar exchanges in semileptonic b -> c tau(-)(nu) over bar (tau) transitions.
|