n_TOF Collaboration(Gawlik, A. et al), Domingo-Pardo, C., Tain, J. L., & Tarifeño-Saldivia, A. (2021). Measurement of the Ge-76(n, gamma) cross section at the n_TOF facility at CERN. Phys. Rev. C, 104(4), 044610–7pp.
Abstract: The Ge-76(n, gamma) reaction has been measured at the n_TOF facility at CERN via the time-of-flight technique. Neutron capture cross sections on Ge-76 are of interest to a variety of low-background experiments, such as neutrinoless double beta decay searches, and to nuclear astrophysics. We have determined resonance capture kernels up to 52 keV neutron energy and used the new data to calculate Maxwellian-averaged neutron capture cross sections for k(B)T values of 5 to 100 keV.
|
Nichols, A. L., Dimitriou, P., Algora, A., Fallot, M., Giot, L., Kondev, F. G., et al. (2023). Improving fission-product decay data for reactor applications: part I-decay heat. Eur. Phys. J. A, 59(4), 78–78pp.
Abstract: Effort has been expended to assess the relative merits of undertaking further decay-data measurements of the main fission-product contributors to the decay heat of neutron-irradiated fissionable fuel and related actinides by means of Total Absorption Gamma-ray Spectroscopy (TAGS – sometimes abbreviated to TAS) and Discrete Gamma-ray Spectroscopy (DGS). This review has been carried out following similar work performed under the auspices of OECD/WPEC-Subgroup 25 (2005-2007) and the International Atomic Energy Agency (2009, 2014), and various highly relevant TAGS measurements completed as a consequence of such assessments. We present our recommendations for new decay-data evaluations, along with possible requirements for total absorption and discrete high-resolution gamma-ray spectroscopy studies that cover approximately 120 fission products and various isomeric states.
|
n_TOF Collaboration(Tarrío, D. et al), Domingo-Pardo, C., Giubrone, G., & Tain, J. L. (2023). Neutron-induced fission cross sections of Th-232 and U-233 up to 1 GeV using parallel plate avalanche counters at the CERN n_TOF facility. Phys. Rev. C, 107(4), 044616–21pp.
Abstract: The neutron-induced fission cross sections of Th-232 and U-233 were measured relative to U-235 in a wide neutron energy range up to 1 GeV (and from fission threshold in the case of Th-232, and from 0.7 eV in case of U-233), using the white-spectrum neutron source at the CERN Neutron Time-of-Flight (nTOF) facility. Parallel plate avalanche counters (PPACs) were used, installed at the Experimental Area 1 (EAR1), which is located at 185 m from the neutron spallation target. The anisotropic emission of fission fragments were taken into account in the detection efficiency by using, in the case of U-233, previous results available in EXFOR, whereas in the case of Th-232 these data were obtained from our measurement, using PPACs and targets tilted 45 degrees with respect to the neutron beam direction. Finally, the obtained results are compared with past measurements and major evaluated nuclear data libraries. Calculations using the high-energy reaction models INCL++ and ABLA07 were performed and some of their parameters were modified to reproduce the experimental results. At high energies, where no other neutron data exist, our results are compared with experimental data on proton-induced fission. Moreover, the dependence of the fission cross section at 1 GeV with the fissility parameter of the target nucleus is studied by combining those ( p, f) data with our (n, f) data on Th-232 and U-233 and on other isotopes studied earlier at nTOF using the same experimental setup.
|
n_TOF Collaboration(Lederer, C. et al), Domingo-Pardo, C., & Tain, J. L. (2011). Au-197(n,gamma) cross section in the unresolved resonance region. Phys. Rev. C, 83(3), 034608–11pp.
Abstract: The cross section of the reaction Au-197(n,gamma) was measured with the time-of-flight technique at the n_TOF (neutron time-of-flight) facility in the unresolved resonance region between 5 and 400 keV using a pair of C6D6 (where D denotes H-2) liquid scintillators for the detection of prompt capture gamma rays. The results with a total uncertainty of 3.9%-6.7% for a resolution of 20 bins per energy decade show fair agreement with the Evaluated Nuclear Data File Version B-VII.0 (ENDF/B-VII.0), which contains the standard evaluation. The Maxwellian-averaged cross section (MACS) at 30 keV is in excellent agreement with the one according to the ENDF/B-VII.0 evaluation and 4.7% higher than the MACS measured independently by activation technique. Structures in the cross section, which had also been reported earlier, have been interpreted as being due to clusters of resonances.
|
n_TOF Collaboration(Paradela, C. et al), Domingo-Pardo, C., & Tain, J. L. (2010). Neutron-induced fission cross section of U-234 and Np-237 measured at the CERN Neutron Time-of-Flight (n_TOF) facility. Phys. Rev. C, 82(3), 034601–11pp.
Abstract: A high-resolution measurement of the neutron-induced fission cross section of U-234 and Np-237 has been performed at the CERN Neutron Time-of-Flight facility. The cross sections have been determined in a wide energy range from 1 eV to 1 GeV using the evaluated U-235 cross section as reference. In these measurements the energy determination for the U-234 resonances could be improved, whereas previous discrepancies for the Np-237 resonances were confirmed. New cross-section data are provided for high neutron energies that go beyond the limits of prior evaluations, obtaining important differences in the case of Np-237.
|
Estevez, E. et al, Algora, A., Rubio, B., Bernabeu, J., Nacher, E., Tain, J. L., et al. (2011). beta-decay study of (150)Er, (152)Yb, and (156)Yb: Candidates for a monoenergetic neutrino beam facility. Phys. Rev. C, 84(3), 034304–6pp.
Abstract: The beta decays of (150)Er, (152)Yb, and (156)Yb nuclei are investigated using the total absorption spectroscopy technique. These nuclei can be considered possible candidates for forming the beam of a monoenergetic neutrino beam facility based on the electron capture (EC) decay of radioactive nuclei. Our measurements confirm that for the cases studied the EC decay proceeds mainly to a single state in the daughter nucleus.
|
n_TOF Collaboration(Calviani, M. et al), Giubrone, G., & Tain, J. L. (2012). Neutron-induced fission cross section of Cm-245: New results from data taken at the time-of-flight facility n_TOF. Phys. Rev. C, 85(3), 034616–10pp.
Abstract: The neutron-induced fission cross section of Cm-245 was measured at n_TOF in a wide energy range and with high resolution. The energy dependence, measured in a single measurement from 30 meV to 1 MeV neutron energy, has been determined with 5% accuracy relative to the U-235(n,f) cross section. In order to reduce the uncertainty on the absolute value, the data have been normalized at thermal energy to recent measurements performed at ILL and BR1. In the energy range of overlap, the results are in fair agreement with some previous measurements and confirm, on average, the evaluated cross section in the ENDF/B-VII.0 database, although sizable differences are observed for some important resonances below 20 eV. A similar behavior is observed relative to JENDL/AC-2008, a reactor-oriented database for actinides. The new results contribute to the overall improvement of the databases needed for the design of advanced reactor systems and may lead to refinements of fission models for the actinides.
|
n_TOF Collaboration(Guerrero, C. et al), Giubrone, G., & Tain, J. L. (2012). Simultaneous measurement of neutron-induced capture and fission reactions at CERN. Eur. Phys. J. A, 48(3), 29–9pp.
Abstract: The measurement of the capture cross-section of fissile elements, of utmost importance for the design of innovative nuclear reactors and the management of nuclear waste, faces particular difficulties related to the.-ray background generated in the competing fission reactions. At the CERN neutron time-of-flight facility nTOF we have combined the Total Absorption Calorimeter (TAC) capture detector with a set of three U-235 loaded MicroMegas (MGAS) fission detectors for measuring simultaneously two reactions: capture and fission. The results presented here include the determination of the three detection efficiencies involved in the process: epsilon(TAC)(n, f), epsilon(TAC)(n, gamma) and epsilon(MGAS)(n, f). In the test measurement we have succeeded in measuring simultaneously with a high total efficiency the U-235 capture and fission cross-sections, disentangling accurately the two types of reactions. The work presented here proves that accurate capture cross-section measurements of fissile isotopes are feasible at nTOF.
|
n_TOF Collaboration(Mendoza, E. et al), Domingo-Pardo, C., & Tain, J. L. (2014). Measurement and analysis of the Am-243 neutron capture cross section at the n_TOF facility at CERN. Phys. Rev. C, 90(3), 034608–16pp.
Abstract: Background: The design of new nuclear reactors and transmutation devices requires to reduce the present neutron cross section uncertainties of minor actinides. Purpose: Improvement of the Am-243(n, gamma) cross section uncertainty. Method: The Am-243(n, gamma) cross section has been measured at the n_TOF facility at CERN with a BaF2 total absorption calorimeter, in the energy range between 0.7 eV and 2.5 keV. Results: The Am-243(n, gamma) cross section has been successfully measured in the mentioned energy range. The resolved resonance region has been extended from 250 eV up to 400 eV. In the unresolved resonance region our results are compatible with one of the two incompatible capture data sets available below 2.5 keV. The data available in EXFOR and in the literature have been used to perform a simple analysis above 2.5 keV. Conclusions: The results of this measurement contribute to reduce the Am-243(n, gamma) cross section uncertainty and suggest that this cross section is underestimated up to 25% in the neutron energy range between 50 eV and a few keV in the present evaluated data libraries.
|
n_TOF Collaboration(Diakaki, M. et al), Domingo-Pardo, C., & Tain, J. L. (2016). Neutron-induced fission cross section of Np-237 in the keV to MeV range at the CERN n_TOF facility. Phys. Rev. C, 93(3), 034614–12pp.
Abstract: The neutron-induced fission cross section of Np-237 was experimentally determined at the high-resolution and high-intensity facility n_TOF, at CERN, in the energy range 100 keV to 9 MeV, using the U-235(n, f) and U-238(n, f) cross section standards below and above 2 MeV, respectively. A fast ionization chamber was used in order to detect the fission fragments from the reactions and the targets were characterized as far as their mass and homogeneity are concerned by means of a spectroscopy and Rutherford backscattering spectroscopy respectively. Theoretical calculations within the Hauser-Feshbach formalism have been performed, employing the EMPIRE code, and the model parameters were tuned in order to successfully reproduce the experimental fission cross-sectional data and simultaneously all the competing reaction channels.
|