|   | 
Details
   web
Records
Author Di Valentino, E.; Gariazzo, S.; Giusarma, E.; Mena, O.
Title Robustness of cosmological axion mass limits Type Journal Article
Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 91 Issue (down) 12 Pages 123505 - 12pp
Keywords
Abstract We present the cosmological bounds on the thermal axion mass in an extended cosmological scenario in which the primordial power spectrum of scalar perturbations differs from the usual power-law shape predicted by the simplest inflationary models. The power spectrum is instead modeled by means of a “piecewise cubic Hermite interpolating polynomial” (PCHIP). When using cosmic microwave background measurements combined with other cosmological data sets, the thermal axion mass constraints are degraded only slightly. The addition of the measurements of sigma(8) and Omega(m) from the 2013 Planck cluster catalog on galaxy number counts relaxes the bounds on the thermal axion mass, mildly favoring a similar to 1 eV axion mass, regardless of the model adopted for the primordial power spectrum. However, in general, such a preference disappears if the sum of the three active neutrino masses is also considered as a free parameter in our numerical analyses, due to the strong correlation between the masses of these two hot thermal relics.
Address [Di Valentino, Eleonora] CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000355623400003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2253
Permanent link to this record
 

 
Author Nunes, R.C.; Vagnozzi, S.; Kumar, S.; Di Valentino, E.; Mena, O.
Title New tests of dark sector interactions from the full-shape galaxy power spectrum Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 105 Issue (down) 12 Pages 123506 - 18pp
Keywords
Abstract We explore the role of redshift-space galaxy clustering data in constraining nongravitational interactions between dark energy (DE) and dark matter (DM), for which state-of-the-art limits have so far been obtained from late-time background measurements. We use the joint likelihood for prereconstruction full-shape (FS) galaxy power spectrum and postreconstruction Baryon Acoustic Oscillation (BAO) measurements from the BOSS DR12 sample, alongside Cosmic Microwave Background (CMB) data from Planck: from this dataset combination we infer H0 1/4 68.02+0.49 and the 2?? lower limit ?? > ???0.12, among the strongest limits ever reported on the DM-DE coupling strength ?? for the particular model considered. Contrary to what has been observed for the ??CDM model and simple extensions thereof, we find that the CMB + FS combination returns tighter constraints compared to the CMB + BAO one, suggesting that there is valuable additional information contained in the broadband of the power spectrum. We test this finding by running additional CMB-free analyses and removing sound horizon information, and discuss the important role of the equality scale in setting constraints on DM-DE interactions. Our results reinforce the critical role played by redshift-space galaxy clustering measurements in the epoch of precision cosmology, particularly in relation to tests of nonminimal dark sector extensions of the ??CDM model.
Address [Nunes, Rafael C.] Univ Fed Rio Grande Do Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil, Email: rafadcnunes@gmail.com;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000813312800005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5269
Permanent link to this record
 

 
Author Di Valentino, E.; Melchiorri, A.; Mena, O.
Title Dark radiation sterile neutrino candidates after Planck data Type Journal Article
Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue (down) 11 Pages 018 - 13pp
Keywords cosmological neutrinos; neutrino properties; neutrino theory; dark energy theory
Abstract Recent Cosmic Microwave Background (CMB) results from the Planck satellite, combined with previous CMB data and Hubble constant measurements from the Hubble Space Telescope, provide a constraint on the effective number of relativistic degrees of freedom 3.62(-0.48)(+0.50) at 95% CL. New Planck data provide a unique opportunity to place limits on models containing relativistic species at the decoupling epoch. We present here the bounds on sterile neutrino models combining Planck data with galaxy clustering information. Assuming N-eff active plus sterile massive neutrino species, in the case of a Planck+WP+HighL+HST analysis we find m(nu,sterile)(eff) < 0.36 eV and 3.14 < N-eff < 4.15 at 95% CL, while using Planck+WP+HighL data in combination with the full shape of the galaxy power spectrum from the Baryon Oscillation Spectroscopic Survey BOSS Data Relase 9 measurements, we find that 3.30 < N-eff < 4.43 and m(nu,sterile)(eff) < 0.33 eV both at 95% CL with the three active neutrinos having the minimum mass allowed in the normal hierarchy scheme, i.e. Sigma m(nu) similar to 0.06 eV. These values compromise the viability of the (3 + 2) massive sterile neutrino models for the parameter region indicated by global fits of neutrino oscillation data. Within the (3 + 1) massive sterile neutrino scenario, we find m(nu,sterile)(eff) < 0.34 eV at 95% CL. While the existence of one extra sterile massive neutrino state is compatible with current oscillation data, the values for the sterile neutrino mass preferred by oscillation analyses are significantly higher than the current cosmological bound. We review as well the bounds on extended dark sectors with additional light species based on the latest Planck CMB observations.
Address [Di Valentino, Eleonora; Melchiorri, Alessandro] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy, Email: eleonora.divalentino@roma1.infn.it;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000327843900019 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1672
Permanent link to this record
 

 
Author Yang, W.Q.; Pan, S.; Di Valentino, E.; Mena, O.; Melchiorri, A.
Title 2021-H-0 odyssey: closed, phantom and interacting dark energy cosmologies Type Journal Article
Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 10 Issue (down) 10 Pages 008 - 21pp
Keywords baryon acoustic oscillations; cosmological parameters from CMBR; cosmological perturbation theory; dark energy theory
Abstract Up-to-date cosmological data analyses have shown that (sigma) a closed universe is preferred by the Planck data at more than 99% CL, and (b) interacting scenarios offer a very compelling solution to the Hubble constant tension. In light of these two recent appealing scenarios, we consider here an interacting dark matter-dark energy model with a non-zero spatial curvature component and a freely varying dark energy equation of state in both the quintessential and phantom regimes. When considering Cosmic Microwave Background data only, a phantom and closed universe can perfectly alleviate the Hubble tension, without the necessity of a coupling among the dark sectors. Accounting for other possible cosmological observations compromises the viability of this very attractive scenario as a global solution to current cosmological tensions, either by spoiling its effectiveness concerning the H-0 problem, as in the case of Supernovae Ia data, or by introducing a strong disagreement in the preferred value of the spatial curvature, as in the case of Baryon Acoustic Oscillations.
Address [Yang, Weiqiang] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China, Email: d11102004@163.com;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000711524000011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5012
Permanent link to this record
 

 
Author Di Valentino, E.; Gariazzo, S.; Giunti, C.; Mena, O.; Pan, S.; Yang, W.Q.
Title Minimal dark energy: Key to sterile neutrino and Hubble constant tensions? Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 105 Issue (down) 10 Pages 103511 - 15pp
Keywords
Abstract Minimal dark energy models, described by the same number of free parameters of the standard cosmological model with cold dark matter plus a cosmological constant to parametrize the dark energy component, constitute very appealing scenarios which may solve long-standing, pending tensions. On the one hand, they alleviate significantly the tension between cosmological observations and the presence of one sterile neutrino motivated by the short-baseline anomalies: we obtain a 95% CL cosmological bound on the mass of a fully thermalized fourth sterile neutrino (N-eff = 4) equal to m(s) < 0.65(1.3) eV within the Phenomenologically Emergent Dark Energy (PEDE) and Vacuum Metamorphosis (VM) scenarios under consideration. Interestingly, these limits are in agreement with the observations at short-baseline experiments, and the PEDE scenario is favored with respect to the Lambda CDM case when the full data combination is considered. On the other hand, the Hubble tension is satisfactorily solved in almost all the minimal dark energy schemes explored here. These phenomenological scenarios may therefore shed light on differences arising from near and far Universe probes, and also on discrepancies between cosmological and laboratory sterile neutrino searches.
Address [Di Valentino, Eleonora] Univ Sheffield, Sch Math & Stat, Hounsfield Rd, Sheffield S3 7RH, S Yorkshire, England, Email: e.divalentino@sheffield.ac.uk;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000807806300013 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5248
Permanent link to this record