|   | 
Details
   web
Records
Author Izadi, A.; Shacker, S.S.; Olmo, G.J.; Banerjee, R.
Title Observational effects of varying speed of light in quadratic gravity cosmological models Type Journal Article
Year 2018 Publication International Journal of Geometric Methods in Modern Physics Abbreviated Journal Int. J. Geom. Methods Mod. Phys.
Volume 15 Issue (down) 5 Pages 1850084 - 16pp
Keywords Palatini formalism; modified gravity; causal structure constant; varying speed of light
Abstract We study different manifestations of the speed of light in theories of gravity where metric and connection are regarded as independent fields. We find that for a generic gravity theory in a frame with locally vanishing affine connection, the usual degeneracy between different manifestations of the speed of light is broken. In particular, the space-time causal structure constant (c(ST)) may become variable in that local frame. For theories of the form f(R, R-mu nu R-mu nu), this variation in c(ST) has an impact on the definition of the luminosity distance (and distance modulus), which can be used to confront the predictions of particular models against Supernovae type Ia (SN Ia) data. We carry out this test for a quadratic gravity model without cosmological constant assuming (i) a constant speed of light and (ii) a varying speed of light (VSL), and find that the latter scenario is favored by the data.
Address [Izadi, Azam] Khajeh Nasir Toosi Univ Technol, Dept Phys, Tehran, Iran, Email: aizadi@kntu.ac.ir;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0219-8878 ISBN Medium
Area Expedition Conference
Notes WOS:000429106400016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3553
Permanent link to this record
 

 
Author Boudet, S.; Bombacigno, F.; Olmo, G.J.; Porfirio, P.
Title Quasinormal modes of Schwarzschild black holes in projective invariant Chern-Simons modified gravity Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 05 Issue (down) 5 Pages 032 - 29pp
Keywords Gauss-Bonnet-Lovelock-Horndeski-Palatini etc gravity theories; Exact solutions; black holes and black hole thermodynamics in GR and beyond
Abstract We generalize the Chern-Simons modified gravity to the metric-affine case and impose projective invariance by supplementing the Pontryagin density with homothetic curvature terms which do not spoil topologicity. The latter is then broken by promoting the coupling of the Chern-Simons term to a (pseudo)-scalar field. The solutions for torsion and nonmetricity are derived perturbatively, showing that they can be iteratively obtained from the background fields. This allows us to describe the dynamics for the metric and the scalar field perturbations in a self-consistent way, and we apply the formalism to the study of quasi normal modes in a Schwarzschild black hole background. Unlike in the metric formulation of this theory, we show that the scalar field is endowed with dynamics even in the absence of its kinetic term in the action. Finally, using numerical methods we compute the quasinormal frequencies and characterize the late-time power law tails for scalar and metric perturbations, comparing the results with the outcomes of the purely metric approach.
Address [Boudet, S.] Univ Trento, Dipartimento Fis, Via Sommar 14, I-38123 Povo, TN, Italy, Email: simon.boudet@unitn.it;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000804493000004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5238
Permanent link to this record
 

 
Author Araujo Filho, A.A.; Hassanabadi, H.; Heidari, N.; Kriz, J.; Zare, S.
Title Gravitational traces of bumblebee gravity in metric-affine formalism Type Journal Article
Year 2024 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 41 Issue (down) 5 Pages 055003 - 21pp
Keywords bumblebee gravity; metric affine formalism; shadows
Abstract This work explores various manifestations of bumblebee gravity within the metric-affine formalism. We investigate the impact of the Lorentz violation parameter, denoted as X, on the modification of the Hawking temperature. Our calculations reveal that as X increases, the values of the Hawking temperature attenuate. To examine the behavior of massless scalar perturbations, specifically the quasinormal modes, we employ the Wentzel-Kramers-Brillouin method. The transmission and reflection coefficients are determined through our calculations. The outcomes indicate that a stronger Lorentz-violating parameter results in slower damping oscillations of gravitational waves. To comprehend the influence of the quasinormal spectrum on time-dependent scattering phenomena, we present a detailed analysis of scalar perturbations in the time-domain solution. Additionally, we conduct an investigation on shadows, revealing that larger values of X correspond to larger shadow radii. Furthermore, we constrain the magnitude of the shadow radii using the EHT horizon-scale image of SgrA* . Finally, we calculate both the time delay and the deflection angle.
Address [Araujo Filho, A. A.] Univ Valencia, CSIC, Dept Fis Teor, Ctr MIxto Univ Valencia, Burjassot 46100, Valencia, Spain, Email: dilto@fisica.ufc.br
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:001152994800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5925
Permanent link to this record
 

 
Author Lessa, L.A.; Maluf, R.V.; Silva, J.E.G.; Almeida, C.A.S.
Title Braneworlds in warped Einsteinian cubic gravity Type Journal Article
Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 05 Issue (down) 5 Pages 123 - 25pp
Keywords Gauss-Bonnet-Lovelock-Horndeski-Palatini etc gravity theories; gravity; modified gravity
Abstract Einstenian cubic gravity (ECG) is a modified theory of gravity constructed with cubic contractions of the curvature tensor. This theory has the remarkable feature of having the same two propagating degrees of freedom of Einstein gravity (EG), at the perturbative level on maximally symmetric spacetimes. The additional unstable modes steaming from the higher order derivative dynamics are suppressed provided that we consider the ECG as an effective field theory wherein the cubic terms are seen as perturbative corrections of the Einstein -Hilbert term. Extensions of ECG have been proposed in cosmology and compact objects in order to probe if this property holds in more general configurations. In this work, we construct a modified ECG gravity in a five dimensional warped braneworld scenario. By assuming a specific combination of the cubic parameters, we obtained modified gravity equations of motion with terms up to second -order. For a thin 3-brane, the cubic -gravity corrections yield an effective positive bulk cosmological constant. Thus, in order to keep the 5D bulk warped compact, an upper bound of the cubic parameter with respect to the bulk curvature was imposed. For a thick brane, the cubic -gravity terms modify the scalar field potential and its corresponding vacuum. Nonetheless, the domain -wall structure with a localized source is preserved. At the perturbative level, the Kaluza-Klein (KK) tensor gravitational modes are stable and possess a localized massless mode provided the cubic corrections are small compared to the EG braneworld.
Address [Lessa, L. A.; Maluf, R. V.; Silva, J. E. G.; Almeida, C. A. S.] Univ Fed Ceara UFC, Dept Fis, Campus Pici, BR-60455760 Fortaleza, CE, Brazil, Email: leandrolessa@fisica.ufc.br;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001240966600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6164
Permanent link to this record
 

 
Author Magalhaes, R.B.; Ribeiro, G.P.; Lima, H.C.D.J.; Olmo, G.J.; Crispino, L.C.B.
Title Singular space-times with bounded algebraic curvature scalars Type Journal Article
Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 05 Issue (down) 5 Pages 114 - 34pp
Keywords gravity; modified gravity; Wormholes
Abstract We show that the absence of unbounded algebraic curvature invariants constructed from polynomials of the Riemann tensor cannot guarantee the absence of strong singularities. As a consequence, it is not sufficient to rely solely on the analysis of such scalars to assess the regularity of a given space-time. This conclusion follows from the analysis of incomplete geodesics within the internal region of asymmetric wormholes supported by scalar matter which arise in two distinct metric-affine gravity theories. These wormholes have bounded algebraic curvature scalars everywhere, which highlights that their finiteness does not prevent the emergence of pathologies (singularities) in the geodesic structure of space-time. By analyzing the tidal forces in the internal wormhole region, we find that the angular components are unbounded along incomplete radial time-like geodesics. The strength of the singularity is determined by the evolution of Jacobi fields along such geodesics, finding that it is of strong type, as volume elements are torn apart as the singularity is approached. Lastly, and for completeness, we consider the wormhole of the quadratic Palatini theory and present an analysis of the tidal forces in the entire space-time.
Address [Magalhaes, Renan B.; Ribeiro, Gabriel P.; Lima Jr, Haroldo C. D.; Crispino, Luis C. B.] Univ Fed Para, Programa Posgrad Fis, BR-66075110 Belem, Para, Brazil, Email: renan.magalhaes@icen.ufpa.br;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001265908300012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6200
Permanent link to this record
 

 
Author Guendelman, E.I.; Olmo, G.J.; Rubiera-Garcia, D.; Vasihoun, M.
Title Nonsingular electrovacuum solutions with dynamically generated cosmological constant Type Journal Article
Year 2013 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 726 Issue (down) 4-5 Pages 870-875
Keywords Modified gravity; Palatini formalism; Nonlinear electrodynamics; Dynamical cosmological constant; Nonsingular solutions; Wormholes
Abstract We consider static spherically symmetric configurations in a Palatini extension of General Relativity including R-2 and Ricci-squared terms, which is known to replace the central singularity by a wormhole in the electrovacuum case. We modify the matter sector of the theory by adding to the usual Maxwell term a nonlinear electromagnetic extension which is known to implement a confinement mechanism in flat space. One feature of the resulting theory is that the nonlinear electric field leads to a dynamically generated cosmological constant. We show that with this matter source the solutions of the model are asymptotically de Sitter and possess a wormhole topology. We discuss in some detail the conditions that guarantee the absence of singularities and of traversable wormholes.
Address [Guendelman, E. I.; Vasihoun, M.] Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel, Email: guendel@bgumail.bgu.ac.il;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000327907000045 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1680
Permanent link to this record
 

 
Author Olmo, G.J.
Title Palatini approach to modified gravity: f(R) theories and beyond Type Journal Article
Year 2011 Publication International Journal of Modern Physics D Abbreviated Journal Int. J. Mod. Phys. D
Volume 20 Issue (down) 4 Pages 413-462
Keywords Palatini formalism; modified gravity; cosmic speed-up; dark energy; dark matter; MOND; quantum gravity phenomenology; Hamiltonian formulation; stellar structure; Cauchy problem; solar system tests
Abstract We review the recent literature on modified theories of gravity in the Palatini approach. After discussing the motivations that lead to consider alternatives to Einstein's theory and to treat the metric and the connection as independent objects, we review several topics that have been recently studied within this framework. In particular, we provide an in-depth analysis of the cosmic speed-up problem, laboratory and solar system tests, the structure of stellar objects, the Cauchy problem, and bouncing cosmologies. We also discuss the importance of going beyond the f(R) models to capture other phenomenological aspects related with dark matter/energy and quantum gravity.
Address [Olmo, Gonzalo J.] Univ Valencia CSIC, Dept Fis Teor, Valencia, Spain, Email: gonzalo.olmo@uv.es
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0218-2718 ISBN Medium
Area Expedition Conference
Notes WOS:000290228200001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 961
Permanent link to this record
 

 
Author Capozziello, S.; Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J.
Title Cosmology of hybrid metric-Palatini f(X)-gravity Type Journal Article
Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue (down) 4 Pages 011 - 25pp
Keywords modified gravity; dark energy theory
Abstract A new class of modified theories of gravity, consisting of the superposition of the metric Einstein-Hilbert Lagrangian with an f(R) term constructed a la Palatini was proposed recently. The dynamically equivalent scalar-tensor representation of the model was also formulated, and it was shown that even if the scalar field is very light, the theory passes the Solar System observational constraints. Therefore the model predicts the existence of a long-range scalar field, modifying the cosmological and galactic dynamics. An explicit model that passes the local tests and leads to cosmic acceleration was also obtained. In the present work, it is shown that the theory can be also formulated in terms of the quantity X equivalent to kappa T-2 + R, where T and R are the traces of the stress-energy and Ricci tensors, respectively. The variable X represents the deviation with respect to the field equation trace of general relativity. The cosmological applications of this hybrid metric-Palatini gravitational theory are also explored, and cosmological solutions coming from the scalar-tensor representation of f(X)-gravity are presented. Criteria to obtain cosmic acceleration are discussed and the field equations are analyzed as a dynamical system. Several classes of dynamical cosmological solutions, depending on the functional form of the effective scalar field potential, describing both accelerating and decelerating Universes are explicitly obtained. Furthermore, the cosmological perturbation equations are derived and applied to uncover the nature of the propagating scalar degree of freedom and the signatures these models predict in the large-scale structure.
Address Univ Naples Federico II, Dipartimento Fis, Naples, Italy, Email: capozzie@na.infn.it;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000318556200011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1444
Permanent link to this record
 

 
Author Bazeia, D.; Losano, L.; Olmo, G.J.; Rubiera-Garcia, D.
Title Geodesically complete BTZ-type solutions of 2+1 Born-Infeld gravity Type Journal Article
Year 2017 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 34 Issue (down) 4 Pages 045006 - 21pp
Keywords Born-Infeld gravity; BTZ; wormholes; nonsingular solutions; geodesic completeness
Abstract We study Born-Infeld gravity coupled to a static, non-rotating electric field in 2 + 1 dimensions and find exact analytical solutions. Two families of such solutions represent geodesically complete, and hence nonsingular, spacetimes. Another family represents a point-like charge with a singularity at the center. Despite the absence of rotation, these solutions resemble the charged, rotating BTZ solution of general relativity but with a richer structure in terms of horizons. The nonsingular character of the first two families turn out to be attached to the emergence of a wormhole structure on their innermost region. This seems to be a generic prediction of extensions of general relativity formulated in metric-affine (or Palatini) spaces, where metric and connection are regarded as independent degrees of freedom.
Address [Bazeia, D.; Losano, L.; Olmo, Gonzalo J.] Univ Fed Paraiba, Dept Fis, BR-58051900 Joao Pessoa, Paraiba, Brazil, Email: bazeia@fisica.ufpb.br;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:000395398800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3013
Permanent link to this record
 

 
Author Guerrero, M.; Olmo, G.J.; Rubiera-Garcia, D.
Title Double shadows of reflection-asymmetric wormholes supported by positive energy thin-shells Type Journal Article
Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue (down) 4 Pages 066 - 26pp
Keywords modified gravity; Wormholes; gravity
Abstract We consider reflection-asymmetric thin-shell wormholes within Palatini f(R) gravity using a matching procedure of two patches of electrovacuum space-times at a hypersurface (the shell) via suitable junction conditions. The conditions for having (linearly) stable wormholes supported by positive-energy matter sources are determined. We also identify some subsets of parameters able to locate the shell radius above the event horizon (when present) but below the photon sphere (on both sides). We illustrate with an specific example that such two photon spheres allow an observer on one of the sides of the wormhole to see another (circular) shadow in addition to the one generated by its own photon sphere, which is due to the photons passing above the maximum of the effective potential on its side and bouncing back across the throat due to a higher effective potential on the other side. We finally comment on the capability of these double shadows to seek for traces of new gravitational physics beyond that described by General Relativity.
Address [Guerrero, Merce; Rubiera-Garcia, Diego] Univ Complutense Madrid, Dept Fis Teor, E-28040 Madrid, Spain, Email: merguerr@ucm.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000644501000029 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4823
Permanent link to this record