toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Maluf, R.V.; Mora-Perez, G.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Nonsingular, Lump-like, Scalar Compact Objects in (2+1)-Dimensional Einstein Gravity Type Journal Article
  Year 2024 Publication Universe Abbreviated Journal Universe  
  Volume 10 Issue (down) 6 Pages 258 - 13pp  
  Keywords Einstein gravity; compact objects; nonlinear scalar field  
  Abstract We study the space-time geometry generated by coupling a free scalar field with a noncanonical kinetic term to general relativity in (2+1) dimensions. After identifying a family of scalar Lagrangians that yield exact analytical solutions in static and circularly symmetric scenarios, we classify the various types of solutions and focus on a branch that yields asymptotically flat geometries. We show that the solutions within such a branch can be divided in two types, namely naked singularities and nonsingular objects without a center. In the latter, the energy density is localized around a maximum and vanishes only at infinity and at an inner boundary. This boundary has vanishing curvatures and cannot be reached by any time-like or null geodesic in finite affine time. This allows us to consistently interpret such solutions as nonsingular, lump-like, static compact scalar objects whose eventual extension to the (3+1)-dimensional context could provide structures of astrophysical interest.  
  Address [Maluf, Roberto V.; Olmo, Gonzalo J.] Univ Fed Ceara UFC, Dept Fis, Campus Pici, BR-60455760 Fortaleza, Ceara, Brazil, Email: r.v.maluf@fisica.ufc.br;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001256495600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6169  
Permanent link to this record
 

 
Author IDS Collaboration (Andel, B. et al); Algora, A.; Nacher, E. doi  openurl
  Title β decay of the ground state and of a low-lying isomer in Bi-216 Type Journal Article
  Year 2024 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 109 Issue (down) 6 Pages 064321 - 18pp  
  Keywords  
  Abstract A detailed beta -decay study of the low- and high -spin states in 216 Bi has been performed at the ISOLDE Decay Station at the CERN-ISOLDE facility. In total, 48 new levels and 83 new transitions in the beta -decay daughter 216 Po were identified. Shell -model calculations for excited states in 216 Bi and 216 Po were performed using the H208 and the modified Kuo-Herling particle effective interactions. Based on the experimental observations and the shell -model calculations, the most likely spin and parity assignments for the beta -decaying states in 216 Bi are (3 – ) and (8 – ), respectively.  
  Address [Andel, B.; Antalic, S.; Mosat, P.] Comenius Univ, Dept Nucl Phys & Biophys, Bratislava 84248, Slovakia, Email: boris.andel@fmph.uniba.sk  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001255548200005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6170  
Permanent link to this record
 

 
Author Giachino, A.; van Hameren, A.; Ziarko, G. url  doi
openurl 
  Title A new subtraction scheme at NLO exploiting the privilege of k<sub>T</sub>-factorization Type Journal Article
  Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue (down) 6 Pages 167 - 39pp  
  Keywords Higher-Order Perturbative Calculations; Deep Inelastic Scattering or Small-x Physics; Factorization; Renormalization Group  
  Abstract We present a subtraction method for the calculation of real-radiation integrals at NLO in hybrid k(T)-factorization. The main difference with existing methods for collinear factorization is that we subtract the momentum recoil, occurring due to the mapping from an (n + 1)-particle phase space to an n-particle phase space, from the initial-state momenta, instead of distributing it over the final-state momenta.  
  Address [Giachino, Alessandro; van Hameren, Andreas; Ziarko, Grzegorz] Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland, Email: Alessandro.Giachino@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001254801000006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6175  
Permanent link to this record
 

 
Author Araujo Filho, A.A.; Hassanabadi, H.; Heidari, N.; Kriz, J.; Zare, S. url  doi
openurl 
  Title Gravitational traces of bumblebee gravity in metric-affine formalism Type Journal Article
  Year 2024 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume 41 Issue (down) 5 Pages 055003 - 21pp  
  Keywords bumblebee gravity; metric affine formalism; shadows  
  Abstract This work explores various manifestations of bumblebee gravity within the metric-affine formalism. We investigate the impact of the Lorentz violation parameter, denoted as X, on the modification of the Hawking temperature. Our calculations reveal that as X increases, the values of the Hawking temperature attenuate. To examine the behavior of massless scalar perturbations, specifically the quasinormal modes, we employ the Wentzel-Kramers-Brillouin method. The transmission and reflection coefficients are determined through our calculations. The outcomes indicate that a stronger Lorentz-violating parameter results in slower damping oscillations of gravitational waves. To comprehend the influence of the quasinormal spectrum on time-dependent scattering phenomena, we present a detailed analysis of scalar perturbations in the time-domain solution. Additionally, we conduct an investigation on shadows, revealing that larger values of X correspond to larger shadow radii. Furthermore, we constrain the magnitude of the shadow radii using the EHT horizon-scale image of SgrA* . Finally, we calculate both the time delay and the deflection angle.  
  Address [Araujo Filho, A. A.] Univ Valencia, CSIC, Dept Fis Teor, Ctr MIxto Univ Valencia, Burjassot 46100, Valencia, Spain, Email: dilto@fisica.ufc.br  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001152994800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5925  
Permanent link to this record
 

 
Author Molina, R.; Xiao, C.W.; Liang, W.H.; Oset, E. url  doi
openurl 
  Title Correlation functions for the N*(1535) and the inverse problem Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue (down) 5 Pages 054002 - 10pp  
  Keywords  
  Abstract The N*(1535) can be dynamically generated in the chiral unitary approach with the coupled channels, K0E+; K+E0; K+A, and eta p. In this work, we evaluate the correlation functions for every channel and face the inverse problem. Assuming the correlation functions to correspond to real measurements, we conduct a fit to the data within a general framework in order to extract the information contained in these correlation functions. The bootstrap method is used to determine the uncertainties of the different observables, and we find that, assuming errors of the same order than in present measurements of correlation functions, one can determine the scattering length and effective range of all channels with a very good accuracy. Most remarkable is the fact that the method predicts the existence of a bound state of isospin 12 nature around the mass of the N*(1535) with an accuracy of 6 MeV. These results should encourage the actual measurement of these correlation functions (only the K+A one is measured so far), which can shed valuable light on the relationship of the N*(1535) state to these coupled channels, a subject of continuous debate.  
  Address [Molina, Raquel; Xiao, Chu -Wen; Liang, Wei -Hong; Oset, Eulogio] Guangxi Normal Univ, Dept Phys, Guilin 541004, Peoples R China, Email: aquel.molina@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001179747300004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6000  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva