|   | 
Details
   web
Records
Author Yokoyama, R. et al; Tain, J.L.; Algora, A.; Agramunt, J.; Domingo-Pardo, C.; Morales, A.I.; Rubio, B.; Tolosa-Delgado, A.
Title β-delayed neutron emissions from N > 50 gallium isotopes Type Journal Article
Year 2023 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 108 Issue (down) 6 Pages 064307 - 15pp
Keywords
Abstract beta-delayed gamma-neutron spectroscopy has been performed on the decay of A=84 to 87 gallium isotopes at the RI-beam Factory at the RIKEN Nishina Center using a high-efficiency array of 3He neutron counters (BRIKEN). beta-2n-gamma events were measured in the decays of all of the four isotopes for the first time, which is direct evidence for populating the excited states of two-neutron daughter nuclei. Detailed decay schemes with the gamma branching ratios were obtained for these isotopes, and the neutron emission probabilities (P-xn) were updated from the previous study. Hauser-Feshbach statistical model calculations were performed to understand the experimental branching ratios. We found that the P-1n and P-2n values are sensitive to the nuclear level densities of 1n daughter nuclei and showed that the statistical model reproduced the P-2n/P-1n ratio better when experimental levels plus shell-model level densities fit by the Gilbert-Cameron formula were used as the level-density input. We also showed the neutron and gamma branching ratios are sensitive to the ground-state spin of the parent nucleus. Our statistical model analysis suggested J <= 3 for the unknown ground-state spin of the odd-odd nucleus Ga-86, from the I gamma(4(+)-> 2(+))/I-gamma(2(+)-> 0(+)) ratio of Ga-84 and the P-2n/P-1n ratio. These results show the necessity of detailed understanding of the decay scheme, including data from neutron spectroscopy, in addition to gamma measurements of the multineutron emitters.
Address [Yokoyama, R.; Grzywacz, R.; Rasco, B. C.; Brewer, N.; Heideman, J.; King, T. T.; Madurga, M.; Singh, M.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA, Email: yokoyama@cns.s.u-tokyo.ac.jp
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:001159167500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5939
Permanent link to this record
 

 
Author n_TOF Collaboration (Tagliente, G. et al.); Domingo-Pardo, C.; Tain, J.L.
Title The Zr-92(n,gamma) reaction and its implications for stellar nucleosynthesis Type Journal Article
Year 2010 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 81 Issue (down) 5 Pages 055801 - 9pp
Keywords
Abstract Because the relatively small neutron capture cross sections of the zirconium isotopes are difficult to measure, the results of previous measurements are often not adequate for a number of problems in astrophysics and nuclear technology. Therefore, the Zr-92(n,gamma) cross section has been remeasured at the CERN n_TOF facility, providing a set of improved parameters for 44 resonances in the neutron energy range up to 40 keV. With this information the cross-section uncertainties in the keV region could be reduced to 5% as required for s-process nucleosynthesis studies and technological applications.
Address [Tagliente, G.; Colonna, N.; Marrone, S.; Terlizzi, R.] Ist Nazl Fis Nucl, I-70126 Bari, Italy, Email: giuseppe.tagliente@ba.infn.it
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0556-2813 ISBN Medium
Area Expedition Conference
Notes ISI:000278144800074 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 444
Permanent link to this record
 

 
Author n_TOF Collaboration (Tagliente, G. et al.); Domingo-Pardo, C.; Tain, J.L.
Title (96)Zr(n,gamma) measurement at the n_TOF facility at CERN Type Journal Article
Year 2011 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 84 Issue (down) 5 Pages 055802 - 8pp
Keywords
Abstract The (n,gamma) cross section of (96)Zr has been investigated at the CERN n_TOF spallation neutron source. High-resolution time-of-flight measurements using an enriched ZrO(2) sample allowed us to analyze 15 resonances below 40 keV with improved accuracy. On average, the capture widths were found to be 25% smaller than reported in earlier experiments. If complemented with the contribution by direct radiative capture, the derived Maxwellian averaged cross sections are consistent with activation data at kT = 25 keV. The present results confirm the astrophysical implications for the s-process branching at (95)Zr.
Address [Tagliente, G; Colonna, N; Marrone, S; Terlizzi, R] Ist Nazl Fis Nucl, I-70126 Bari, Italy, Email: giuseppe.tagliente@ba.infn.it
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0556-2813 ISBN Medium
Area Expedition Conference
Notes WOS:000297121100005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 812
Permanent link to this record
 

 
Author Guerrero, C.; Domingo-Pardo, C.; Kappeler, F.; Lerendegui-Marco, J.; Palomo, F.R.; Quesada, J.M.; Reifarth, R.
Title Prospects for direct neutron capture measurements on s-process branching point isotopes Type Journal Article
Year 2017 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A
Volume 53 Issue (down) 5 Pages 87 - 5pp
Keywords
Abstract The neutron capture cross sections of several unstable key isotopes acting as branching points in the s-process are crucial for stellar nucleosynthesis studies, but they are very challenging to measure directly due to the difficult production of sufficient sample material, the high activity of the resulting samples, and the actual (n, gamma) measurement, where high neutron fluxes and effective background rejection capabilities are required. At present there are about 21 relevant s-process branching point isotopes whose cross section could not be measured yet over the neutron energy range of interest for astrophysics. However, the situation is changing with some very recent developments and upcoming technologies. This work introduces three techniques that will change the current paradigm in the field: the use of gamma-ray imaging techniques in (n,gamma) experiments, the production of moderated neutron beams using high-power lasers, and double capture experiments in Maxwellian neutron beams.
Address [Guerrero, C.; Lerendegui-Marco, J.; Quesada, J. M.] Univ Seville, Dept Fis Atom Mol & Nucl, E-41012 Seville, Spain, Email: carlos.guerrero@cern.ch
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes WOS:000400982700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3129
Permanent link to this record
 

 
Author Ong, W.J. et al; Domingo-Pardo, C.
Title Low-lying level structure of Cu-56 and its implications for the rp process Type Journal Article
Year 2017 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 95 Issue (down) 5 Pages 055806 - 8pp
Keywords
Abstract The low-lying energy levels of proton-rich Cu-56 have been extracted using in-beam gamma-ray spectroscopy with the state-of-the-art gamma-ray tracking array GRETINA in conjunction with the S800 spectrograph at the National Superconducting Cyclotron Laboratory at Michigan State University. Excited states in Cu-56 serve as resonances in the Ni-55(p,gamma)Cu-56 reaction, which is a part of the rp process in type-I x-ray bursts. To resolve existing ambiguities in the reaction Q value, a more localized isobaric multiplet mass equation (IMME) fit is used, resulting in Q = 639 +/- 82 keV. We derive the first experimentally constrained thermonuclear reaction rate for Ni-55(p,.) Cu-56. We find that, with this newrate, the rp processmay bypass the (56)Niwaiting point via the Ni-55(p,gamma) reaction for typical x-ray burst conditions with a branching of up to similar to 40%. We also identify additional nuclear physics uncertainties that need to be addressed before drawing final conclusions about the rp-process reaction flow in the Ni-56 region.
Address [Ong, W. -J.; Langer, C.; Montes, F.; Bazin, D.; Brown, B. A.; Browne, J.; Cyburt, R.; Deleeuw, E. B.; Gade, A.; Keek, L.; Kontos, A.; Lemasson, A.; Lunderberg, E.; Meisel, Z.; Noji, S.; Nunes, F. M.; Perdikakis, G.; Pereira, J.; Quinn, S. J.; Recchia, F.; Schatz, H.; Scott, M.; Simon, A.; Spyrou, A.; Stevens, J.; Stroberg, S. R.; Weisshaar, D.; Wheeler, J.; Wimmer, K.; Zegers, R. G. T.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000401655000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3139
Permanent link to this record