|   | 
Details
   web
Records
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Bariego-Quintana, A.; Calvo, D.; Carretero, V.; Garcia Soto, A.; Gozzini, S.R.; Hernandez-Rey, J.J.; Lazo, A.; Lessing, N.; Manczak, J.; Palacios Gonzalez, J.; Pastor Gomez, E.J.; Rahaman, U.; Real, D.; Saina, A.; Salesa Greus, F.; Sanchez Losa, A.; Zornoza, J.D.; Zuñiga, J.
Title Searches for neutrino counterparts of gravitational waves from the LIGO/Virgo third observing run with KM3NeT Type Journal Article
Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue (down) 4 Pages 026 - 28pp
Keywords neutrino astronomy; gravitational waves / sources; neutrino experiments
Abstract The KM3NeT neutrino telescope is currently being deployed at two different sites in the Mediterranean Sea. First searches for astrophysical neutrinos have been performed using data taken with the partial detector configuration already in operation. The paper presents the results of two independent searches for neutrinos from compact binary mergers detected during the third observing run of the LIGO and Virgo gravitational wave interferometers. The first search looks for a global increase in the detector counting rates that could be associated with inverse beta decay events generated by MeV-scale electron anti -neutrinos. The second one focuses on upgoing track -like events mainly induced by muon (anti -)neutrinos in the GeV-TeV energy range. Both searches yield no significant excess for the sources in the gravitational wave catalogs. For each source, upper limits on the neutrino flux and on the total energy emitted in neutrinos in the respective energy ranges have been set. Stacking analyses of binary black hole mergers and neutron star -black hole mergers have also been performed to constrain the characteristic neutrino emission from these categories.
Address [Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.; Sinopoulou, A.; Tosta e Melo, I] INFN, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: lestum@cppm.in2p3.fr;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001208840500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6115
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Carretero, V.; Colomer, M.; Gozzini, R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Thakore, T.; Zornoza, J.D.; Zuñiga, J.
Title ANTARES upper limits on the multi-TeV neutrino emission from the GRBs detected by IACTs Type Journal Article
Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue (down) 3 Pages 092 - 17pp
Keywords neutrino astronomy; ultra high energy photons and neutrinos; particle acceleration; gamma ray bursts theory
Abstract The first gamma-ray burst detections by Imaging Atmospheric Cherenkov Telescopes have been recently announced: GRB 190114C, detected by MAGIC, GRB 180720B and GRB 190829A, observed by H.E.S.S. A dedicated search for neutrinos in space and time coincidence with the gamma-ray emission observed by IACTs has been performed using ANTARES data. The search covers both the prompt and afterglow phases, yielding no neutrinos in coincidence with the three GRBs studied. Upper limits on the energetics of the neutrino emission are inferred. The resulting upper limits are several orders of magnitude above the observed gamma-ray emission, and they do not allow to constrain the available models.
Address [Albert, A.; Drouhin, D.; Huanga, F.; James, C. W.; de Jong, M.; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC, UMR 7178, F-67000 Strasbourg, France
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000636717400087 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4781
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Garcia Soto, A.; Gozzini, S.R.; Hernandez-Rey, J.J.; Khan Chowdhury, N.R.; Lazo, A.; Manczak, J.; Palacios Gonzalez, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Sanchez Losa, A.; Zornoza, J.D.; Zuñiga, J.
Title Combined sensitivity of JUNO and KM3NeT/ORCA to the neutrino mass ordering Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue (down) 3 Pages 055 - 31pp
Keywords Neutrino Detectors and Telescopes (experiments); Oscillation
Abstract This article presents the potential of a combined analysis of the JUNO and KM3NeT/ORCA experiments to determine the neutrino mass ordering. This combination is particularly interesting as it significantly boosts the potential of either detector, beyond simply adding their neutrino mass ordering sensitivities, by removing a degeneracy in the determination of Delta M-31(2) between the two experiments when assuming the wrong ordering. The study is based on the latest projected performances for JUNO, and on simulation tools using a full Monte Carlo approach to the KM3NeT/ORCA response with a careful assessment of its energy systematics. From this analysis, a 5 sigma determination of the neutrino mass ordering is expected after 6 years of joint data taking for any value of the oscillation parameters. This sensitivity would be achieved after only 2 years of joint data taking assuming the current global best-fit values for those parameters for normal ordering.
Address [Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Italy, Italy, Email: nchau@apc.in2p3.fr;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000767221800005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5181
Permanent link to this record
 

 
Author ANTARES, IceCube, Pierre Auger and Telescope Array Collaborations (Albert, A. et al); Alves, S.; Calvo, D.; Carretero, V.; Gozzini, R.; Hernandez-Rey, J.J.; Khan-Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Real, D.; Sanchez-Losa, A.; Salesa Greus, F.; Zornoza, J.D.; Zuñiga, J.
Title Search for Spatial Correlations of Neutrinos with Ultra-high-energy Cosmic Rays Type Journal Article
Year 2022 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 934 Issue (down) 2 Pages 164 - 21pp
Keywords Neutrino astronomy; High energy astrophysics; Ultra-high-energy cosmic radiation
Abstract For several decades, the origin of ultra-high-energy cosmic rays (UHECRs) has been an unsolved question of high-energy astrophysics. One approach for solving this puzzle is to correlate UHECRs with high-energy neutrinos, since neutrinos are a direct probe of hadronic interactions of cosmic rays and are not deflected by magnetic fields. In this paper, we present three different approaches for correlating the arrival directions of neutrinos with the arrival directions of UHECRs. The neutrino data are provided by the IceCube Neutrino Observatory and ANTARES, while the UHECR data with energies above similar to 50 EeV are provided by the Pierre Auger Observatory and the Telescope Array. All experiments provide increased statistics and improved reconstructions with respect to our previous results reported in 2015. The first analysis uses a high-statistics neutrino sample optimized for point-source searches to search for excesses of neutrino clustering in the vicinity of UHECR directions. The second analysis searches for an excess of UHECRs in the direction of the highest-energy neutrinos. The third analysis searches for an excess of pairs of UHECRs and highest-energy neutrinos on different angular scales. None of the analyses have found a significant excess, and previously reported overfluctuations are reduced in significance. Based on these results, we further constrain the neutrino flux spatially correlated with UHECRs.
Address [Albert, A.; Drouhin, D.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000837839400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5333
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V; Garcia Soto, A.; Gozzini, S.R.; Hernandez-Rey, J. J.; Khan Chowdhury, N.R.; Lazo, A.; Lessing, N.; Manczak, J.; Palacios Gonzalez, J.; Pastor Gomez, E.J.; Rahaman, U.; Real, D.; Salesa Greus, F.; Sanchez Losa, A.; Zornoza, J. D.; Zuñiga, J.
Title KM3NeT broadcast optical data transport system Type Journal Article
Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 18 Issue (down) 2 Pages T02001 - 22pp
Keywords Cherenkov detectors; Data Processing; Large detector systems for particle and astroparticle physics; Optics
Abstract The optical data transport system of the KM3NeT neutrino telescope at the bottom of the Mediterranean Sea will provide more than 6000 optical modules in the detector arrays with a point-to-point optical connection to the control stations onshore. The ARCA and ORCA detectors of KM3NeT are being installed at a depth of about 3500 m and 2500 m, respectively and their distance to the control stations is about 100 kilometers and 40 kilometers. In particular, the two detectors are optimised for the detection of cosmic neutrinos with energies above about 1 TeV (ARCA) and for the detection of atmospheric neutrinos with energies in the range 1 GeV-1 TeV (ORCA). The expected maximum data rate is 200 Mbps per optical module. The implemented optical data transport system matches the layouts of the networks of electro-optical cables and junction boxes in the deep sea. For efficient use of the fibres in the system the technology of Dense Wavelength Division Multiplexing is applied. The performance of the optical system in terms of measured bit error rates, optical budget are presented. The next steps in the implementation of the system are also discussed.
Address [Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000989217700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5565
Permanent link to this record