Xie, J. J., & Oset, E. (2015). Photoproduction of the f(2)(1270) resonance. Eur. Phys. J. A, 51(9), 111–7pp.
Abstract: We have performed a calculation of the gamma(p) -> pi(+) p-p reaction, where the two pions have been separated in D-wave producing the f(2)(1270) resonance. We use elements of the local hidden gauge approach that provides the interaction of vector mesons in which the f(2)(1270) resonance appears as rho-rho. molecular state in L = 0 and spin 2. The vector meson dominance, incorporated in the local hidden gauge approach converts a photon into a rho(0) meson and the other meson connects the photon with the proton. The picture is simple and has no free parameters, since the parameters of the theory have been constrained in the previous study of the vector-vector states. In a second step we introduce new elements, not present in the local hidden gauge approach, adapting the rho propagator to Regge phenomenology and introducing the rho NN tensor coupling. We find that both the differential cross section as well as the t dependence of the cross section are in good agreement with the experimental results and provide support for the molecular picture of the f(2)(1270) resonance in the first baryonic reaction where it has been tested.
|
Vento, V. (2017). AdS gravity and the scalar glueball spectrum. Eur. Phys. J. A, 53(9), 185–4pp.
Abstract: The scalar glueball spectrum has attracted much attention since the formulation of Quantum Chromodynamics. Different approaches give very different results for the glueball masses. We revisit the problem from the perspective of the AdS/CFT correspondence.
|
Ertoprak, A. et al, Algora, A., Gadea, A., & Huyuk, T. (2018). M1 and E2 transition rates from core-excited states in semi-magic Ru-94. Eur. Phys. J. A, 54(9), 145–9pp.
Abstract: Lifetimes of high-spin states have been measured in the semi-magic (N = 50) nucleus Ru-94. Excited states in Ru-94 were populated in the Ni-58(Ca-40, 4p)Ru-94* fusion-evaporation reaction at the Grand Accelerateur National d'Ions Lourds (GANIL) accelerator complex. DSAM lifetime analysis was performed on the Doppler broadened line shapes in energy spectra obtained from gamma-rays emitted while the residual nuclei were slowing down in a thick 6 mg/cm(2) metallic Ni-58 target. In total eight excited-state lifetimes in the angular momentum range I = (13-20)h have been measured, five of which were determined for the first time. The corresponding B(M1) and B(E2) reduced transition strengths are discussed within the framework of large-scale shell model calculations to study the contribution of different particle-hole configurations, in particular for analyzing contributions from core-excited configurations.
|
Rinaldi, M., & Vento, V. (2018). Scalar and tensor glueballs as gravitons. Eur. Phys. J. A, 54(9), 151–7pp.
Abstract: The bottom-up approach of the AdS/CFT correspondence leads to the study of field equations in an AdS(5) background and from their solutions to the determination of the hadronic mass spectrum. We extend the study to the equations of AdS(5) gravitons and determine from them the glueball spectrum. We propose an original presentation of the results which facilitates the comparison of the various models with the spectrum obtained by lattice QCD. This comparison allows to draw some phenomenological conclusions.
|
Accardi, A. et al, Albaladejo, M., Papavassiliou, J., & Passemar, E. (2024). Strong interaction physics at the luminosity frontier with 22 GeV electrons at Jefferson Lab. Eur. Phys. J. A, 60(9), 173–101pp.
Abstract: This document presents the initial scientific case for upgrading the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab (JLab) to 22 GeV. It is the result of a community effort, incorporating insights from a series of workshops conducted between March 2022 and April 2023. With a track record of over 25 years in delivering the world's most intense and precise multi-GeV electron beams, CEBAF's potential for a higher energy upgrade presents a unique opportunity for an innovative nuclear physics program, which seamlessly integrates a rich historical background with a promising future. The proposed physics program encompass a diverse range of investigations centered around the nonperturbative dynamics inherent in hadron structure and the exploration of strongly interacting systems. It builds upon the exceptional capabilities of CEBAF in high-luminosity operations, the availability of existing or planned Hall equipment, and recent advancements in accelerator technology. The proposed program cover various scientific topics, including Hadron Spectroscopy, Partonic Structure and Spin, Hadronization and Transverse Momentum, Spatial Structure, Mechanical Properties, Form Factors and Emergent Hadron Mass, Hadron-Quark Transition, and Nuclear Dynamics at Extreme Conditions, as well as QCD Confinement and Fundamental Symmetries. Each topic highlights the key measurements achievable at a 22 GeV CEBAF accelerator. Furthermore, this document outlines the significant physics outcomes and unique aspects of these programs that distinguish them from other existing or planned facilities. In summary, this document provides an exciting rationale for the energy upgrade of CEBAF to 22 GeV, outlining the transformative scientific potential that lies within reach, and the remarkable opportunities it offers for advancing our understanding of hadron physics and related fundamental phenomena.
|