toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Barrientos, E.; Lobo, F.S.N.; Mendoza, S.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Metric-affine f(R,T) theories of gravity and their applications Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 97 Issue (down) 10 Pages 104041 - 10pp  
  Keywords  
  Abstract We study f (R, T) theories of gravity, where T is the trace of the energy-momentum tensor T-mu v, with independent metric and affine connection (metric-affine theories). We find that the resulting field equations share a close resemblance with their metric-affine f(R) relatives once an effective energy-momentum tensor is introduced. As a result, the metric field equations are second-order and no new propagating degrees of freedom arise as compared to GR, which contrasts with the metric formulation of these theories, where a dynamical scalar degree of freedom is present. Analogously to its metric counterpart, the field equations impose the nonconservation of the energy-momentum tensor, which implies nongeodesic motion arid consequently leads to the appearance of an extra force. The weak field limit leads to a modified Poisson equation formally identical to that found in Eddington-inspired Born-Infeld gravity. Furthermore, the coupling of these gravity theories to perfect fluids, electromagnetic, and scalar fields, and their potential applications arc discussed.  
  Address [Barrientos, E.; Mendoza, S.] Univ Nacl Autonoma Mexico, Inst Astron, AP 70-264, Ciudad De Mexico 04510, Mexico, Email: ebarrientos@astro.unam.mx;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000433036500004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3585  
Permanent link to this record
 

 
Author Afonso, V.I.; Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D. url  doi
openurl 
  Title Mapping nonlinear gravity into General Relativity with nonlinear electrodynamics Type Journal Article
  Year 2018 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 78 Issue (down) 10 Pages 866 - 11pp  
  Keywords  
  Abstract We show that families of nonlinear gravity theories formulated in a metric-affine approach and coupled to a nonlinear theory of electrodynamics can be mapped into general relativity (GR) coupled to another nonlinear theory of electrodynamics. This allows to generate solutions of the former from those of the latter using purely algebraic transformations. This correspondence is explicitly illustrated with the Eddington-inspired Born-Infeld theory of gravity, for which we consider a family of nonlinear electrodynamics and show that, under the map, preserve their algebraic structure. For the particular case of Maxwell electrodynamics coupled to Born-Infeld gravity we find, via this correspondence, a Born-Infeld-type nonlinear electrodynamics on the GR side. Solving the spherically symmetric electrovacuum case for the latter, we show how the map provides directly the right solutions for the former. This procedure opens a new door to explore astrophysical and cosmological scenarios in nonlinear gravity theories by exploiting the full power of the analytical and numerical methods developed within the framework of GR.  
  Address [Afonso, Victor I.] Univ Fed Campina Grande, Unidade Acad Fis, BR-58429900 Campina Grande, PB, Brazil, Email: viafonso@df.ufcg.edu.br;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000448428400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3776  
Permanent link to this record
 

 
Author Lobo, F.S.N.; Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D.; Rustam, A. url  doi
openurl 
  Title Structure and stability of traversable thin-shell wormholes in Palatini f(R) gravity Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 102 Issue (down) 10 Pages 104012 - 11pp  
  Keywords  
  Abstract We study the structure and stability of traversable wormholes built as (spherically symmetric) thin shells in the context of Palatini f(R) gravity. Using a suitable junction formalism for these theories we find that the effective number of degrees of freedom on the shell is reduced to a single one, which fixes the equation of state to be that of massless stress-energy fields, contrary to the general relativistic and metric f(R) cases. Another major difference is that the surface energy density threading the thin shell, needed in order to sustain the wormhole, can take any sign and may even vanish, depending on the desired features of the corresponding solutions. We illustrate our results by constructing thin-shell wormholes by surgically grafting Schwarzschild space-times and show that these configurations are always linearly unstable. However, surgically joined Reissner-Nordstrom space-times allow for linearly stable, traversable thin-shell wormholes supported by a positive energy density provided that the (squared) mass-to-charge ratio, given by y = Q(2)/M-2, satisfies the constraint 1 < y < 9/8 (corresponding to overcharged Reissner-Nordstrom configurations having a photon sphere) and lies in a region bounded by specific curves defined in terms of the (dimensionless) radius of the shell x(0) = R/M.  
  Address [Lobo, Francisco S. N.] Univ Lisbon, Fac Ciencias, Inst Astrofis & Ciencias Espaco, Edificio C8,Campo Grande, P-1749016 Lisbon, Portugal, Email: fslobo@fc.ul.pt;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000587286200006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4596  
Permanent link to this record
 

 
Author Lobo, F.S.N.; Martinez-Asencio, J.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Planck scale physics and topology change through an exactly solvable model Type Journal Article
  Year 2014 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 731 Issue (down) Pages 163-167  
  Keywords Modified gravity; Palatini formalism; Planck scale physics; Dynamical Vaidya solutions; Topology change  
  Abstract We consider the collapse of a charged radiation fluid in a Planck-suppressed quadratic extension of General Relativity (GR) formulated A la Palatini. We obtain exact analytical solutions that extend the charged Vaidya-type solution of GR, which allows to explore in detail new physics at the Planck scale. Starting from Minkowski space, we find that the collapsing fluid generates wormholes supported by the electric field. We discuss the relevance of our findings in relation to the quantum foam structure of space-time and the meaning of curvature divergences in this theory.  
  Address [Lobo, Francisco S. N.] Univ Lisbon, Ctr Astron & Astrofis, P-1749016 Lisbon, Portugal, Email: flobo@cii.fc.ul.pt;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000334094500028 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1757  
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Brane-world and loop cosmology from a gravity-matter coupling perspective Type Journal Article
  Year 2015 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 740 Issue (down) Pages 73-79  
  Keywords Modified gravity; Palatini formalism; f(R) theories; Gravity-matter coupling; Quadratic cosmology  
  Abstract We show that the effective brane-world and the loop quantum cosmology background expansion histories can be reproduced from a modified gravity perspective in terms of an f (R) gravity action plus a g(R) term non-minimally coupled with the matter Lagrangian. The reconstruction algorithm that we provide depends on a free function of the matter density that must be specified in each case and allows to obtain analytical solutions always. In the simplest cases, the function f (R) is quadratic in the Ricci scalar, R, whereas g(R) is linear. Our approach is compared with recent results in the literature. We show that working in the Palatini formalism there is no need to impose any constraint that keeps the equations second order, which is a key requirement for the successful implementation of the reconstruction algorithm.  
  Address [Olmo, Gonzalo J.] Univ Valencia, CSIC, Ctr Mixto, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@csic.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000347046200013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2099  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva