|   | 
Details
   web
Records
Author Sobczyk, J.E.; Rocco, N.; Lovato, A.; Nieves, J.
Title Scaling within the spectral function approach Type Journal Article
Year 2018 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 97 Issue (down) 3 Pages 035506 - 15pp
Keywords
Abstract Scaling features of the nuclear electromagnetic response functions unveil aspects of nuclear dynamics that are crucial for interpreting neutrino-and electron-scattering data. In the large momentum-transfer regime, the nucleon-density response function defines a universal scaling function, which is independent of the nature of the probe. In this work, we analyze the nucleon-density response function of C-12, neglecting collective excitations. We employ particle and hole spectral functions obtained within two distinct many-body methods, both widely used to describe electroweak reactions in nuclei. We show that the two approaches provide compatible nucleon-density scaling functions that for large momentum transfers satisfy first-kind scaling. Both methods yield scaling functions characterized by an asymmetric shape, although less pronounced than that of experimental scaling functions. This asymmetry, only mildly affected by final state interactions, is mostly due to nucleon-nucleon correlations, encoded in the continuum component of the hole spectral function.
Address [Sobczyk, J. E.; Nieves, J.] Univ Valencia, Inst Invest Paterna, Inst Fis Corpuscular IFIC, Ctr Mixto CSIC, Apartado 22085, E-46071 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000428505400006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3544
Permanent link to this record
 

 
Author Sobczyk, J.E.; Rocco, N.; Nieves, J.
Title Polarization of tau in quasielastic (anti)neutrino scattering: The role of spectral functions Type Journal Article
Year 2019 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 100 Issue (down) 3 Pages 035501 - 14pp
Keywords
Abstract We present a study of the tau polarization in charged-current quasielastic (anti)neutrino-nucleus scattering. The spectral function formalism is used to compute the differential cross section and the polarization components for several kinematical setups, relevant for neutrino-oscillation experiments. The effects of the nuclear corrections in these observables are investigated by comparing the results obtained using two different realistic spectral functions, with those deduced from the relativistic global Fermi gas model, where only statistical correlations are accounted for. We show that the spectral functions, although they play an important role when predicting the differential cross sections, produce much less visible effects on the polarization components of the outgoing tau.
Address [Sobczyk, J. E.; Nieves, J.] Univ Valencia, Ctr Mixto CSIC, Inst Fis Corpuscular IFIC, Inst Invest Paterna, Apartado 22085, E-46071 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000483582500009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4126
Permanent link to this record
 

 
Author Yao, D.L.; Fernandez-Soler, P.; Guo, F.K.; Nieves, J.
Title New parametrization of the form factors in (B)over-bar -> Dl(nu)over-bar(l) decays Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 101 Issue (down) 3 Pages 034014 - 7pp
Keywords
Abstract A new model-independent parametrization is proposed for the hadronic form factors in the semileptonic (B) over bar -> Dl (nu) over bar (l) decay. By a combined consideration of the recent experimental and lattice QCD data, we determine precisely the Cabibbo-Kobayashi-Maskawa matrix element vertical bar V-cb vertical bar = 41.01(75) x 10(-3) and the ratio R-D = BR((B) over bar -> D tau(nu) over bar (tau))/BR((B) over bar -> Dl (nu) over bar (l)) = 0.301(5). The coefficients in this parametrization, related to phase shifts by sumrulelike dispersion relations and hence called phase moments, encode important scattering information of the (B) over bar (D) over bar interactions which are poorly known so far. Thus, we give strong hints about the existence of at least one bound and one virtual (B) over bar (D) over bar S-wave 0(+) states, subject to uncertainties produced by potentially sizable inelastic effects. This formalism is also applicable for any other semileptonic processes induced by the weak b -> c transition.
Address [Yao, De-Liang] Hunan Univ, Sch Phys & Elect, Changsha 410082, Hunan, Peoples R China
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000513217400004 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4277
Permanent link to this record
 

 
Author Albaladejo, M.; Nieves, J.; Tolos, L.
Title D(D)over-bar* scattering and chi(c1) (3872) in nuclear matter Type Journal Article
Year 2021 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 104 Issue (down) 3 Pages 035203 - 20pp
Keywords
Abstract We study the behavior of the chi(c1) (3872), also known as X(3872), in dense nuclear matter. We begin from a picture in vacuum of the X(3872) as a purely molecular (D (D) over bar*-c.c.) state, generated as a bound state from a heavy-quark symmetry leading-order interaction between the charmed mesons, and analyze the D (D) over bar* scattering T matrix (T-D (D) over bar*) inside of the medium. Next, we consider also mixed-molecular scenarios and, in all cases, we determine the corresponding X(3872) spectral function and the D (D) over bar* amplitude, with the mesons embedded in the dense environment. We find important nuclear corrections for T-D (D) over bar* and the pole position of the resonance, and discuss the dependence of these results on the D (D) over bar* molecular component in the X(3872) wave function. These predictions could be tested in the finite-density regime that can be accessed in the future CBM and PANDA experiments at the Facility for Antiproton and Ion Research (FAIR).
Address [Albaladejo, M.] Thomas Jefferson Natl Accelerator Facil, Theory Ctr, Newport News, VA 23606 USA
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000704558000004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4999
Permanent link to this record
 

 
Author Montesinos, V.; Albaladejo, M.; Nieves, J.; Tolos, L.
Title Properties of the Tcc(3875)+ and Tcbar,cbar(3875)- and their heavy-quark spin partners in nuclear matter Type Journal Article
Year 2023 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 108 Issue (down) 3 Pages 035205 - 15pp
Keywords
Abstract We discuss the modification of the properties of the tetraquark-like Tcc(3875)+ and Tc over bar c over bar (3875)- states in dense nuclear matter. We consider the Tcc+ and Tc over bar c over bar – in vacuum as purely isoscalar D*D and D*D S-wave bound states, respectively, dynamically generated from a heavy-quark effective interaction between the charmed mesons. We compute the D, D, D*, and D* spectral functions embedded in a nuclear medium and use them to determine the corresponding Tcc+ and Tc over bar c over bar – self-energies and spectral functions. We find important modifications of the D*D and D*D scattering amplitudes and of the pole position of these exotic states already for p0/2, with p0 the normal nuclear density. We also discuss the dependence of these results on the D*D (D*D) molecular component in the Tcc+ (Tc over bar c- over bar ) wave function. Owing to the different nature of the D(*)N and D(*)N interactions, we find characteristic changes of the in-medium properties of the Tcc(3875)+ and Tc over bar c over bar (3875)-, which become increasingly visible as the density increases. The experimental confirmation of the found distinctive density pattern will give support to the existence of molecular components in these tetraquark-like states, since in the case they were mostly colorless compact quark structures (cct over bar t over bar and c over bar c over bar tt, with t = u, d), the density behaviors of the Tcc(3875)+ and Tc over bar c over bar (3875)- nuclear medium spectral functions, though different, would not likely be the same as those found in this work for molecular scenarios. Finally, we perform similar analyses for the isoscalar JP = 1+ heavy-quark spin symmetry partners of the Tcc+ (T cc *+ ) and the T c over bar c- over bar (T*- c over bar c over bar ) by considering the D*0D*+ and D*0D*- scattering T matrices.
Address [Montesinos, V.; Albaladejo, M.; Nieves, J.] Ctr Mixto CSIC UV, Inst Fis Corpuscular, Inst Invest Paterna, C-Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: Victor.Montesinos@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:001080598700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5705
Permanent link to this record