toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Moles-Valls, R. doi  openurl
  Title Alignment of the ATLAS Inner Detector with proton-proton collision data Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 650 Issue (up) 1 Pages 235-239  
  Keywords ATLAS; Inner detector; Tracking system; Alignment  
  Abstract ATLAS is a multipurpose experiment that records the products of the LHC collisions. In order to reconstruct the trajectories of the charged particles produced in these collisions. ATLAS has an internal tracking system made of silicon planar sensors (pixels and micro-strips) and drift-tube based detectors; both together, they constitute the ATLAS Inner Detector. The alignment of the ATLAS tracking system requires the determination of their almost 36,000 degrees-of-freedom (DOF) with high accuracy. Thus, the demanded precision for the alignment of the pixel and micro-strip sensors is below 10 μm. As alignment algorithms are based on the minimization of the track-hit residuals, a linear system with a large number of DOF has to be solved. The alignment results of the ATLAS tracker using data recorded during cosmic commissioning phases in 2008 and 2009 and the LHC start up run in 2009 will be presented. Moreover recent 7 TeV data collected during 2010 run have been used to study the detector performance. These studies reveal that the detector is aligned with a precision high enough to cope with the requirements.  
  Address [Moles-Valls, R] IFIC CSIC UV Valencia, Valencia, Spain, Email: Regina.Moles@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000295106500050 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 767  
Permanent link to this record
 

 
Author Aliaga, R.J.; Guirao, A.J. url  doi
openurl 
  Title On the preserved extremal structure of Lipschitz-free spaces Type Journal Article
  Year 2019 Publication Studia Mathematica Abbreviated Journal Studia Math.  
  Volume 245 Issue (up) 1 Pages 1-14  
  Keywords concave space; extremal structure; Lipschitz-free space; Lipschitz function; metric alignment; preserved extreme point  
  Abstract We characterize preserved extreme points of the unit ball of Lipschitz-free spaces F (X) in terms of simple geometric conditions on the underlying metric space (X, d). Namely, the preserved extreme points are the elementary molecules corresponding to pairs of points p, q in X such that the triangle inequality d (p, q) <= d (p, r) + d (q, r) is uniformly strict for r away from p, q. For compact X, this condition reduces to the triangle inequality being strict. As a consequence, we give an affirmative answer to a conjecture of N. Weaver that compact spaces are concave if and only if they have no triple of metrically aligned points, and we show that all extreme points are preserved for several classes of compact metric spaces X, including Holder and countable compacta.  
  Address [Aliaga, Ramon J.; Guirao, Antonio J.] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Camino Vera S-N, E-46022 Valencia, Spain, Email: raalva@upvnet.upv.es;  
  Corporate Author Thesis  
  Publisher Polish Acad Sciences Inst Mathematics-Impan Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-3223 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000446980500001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3753  
Permanent link to this record
 

 
Author CALICE Collaboration (White, A. et al); Irles, A. url  doi
openurl 
  Title Design, construction and commissioning of a technological prototype of a highly granular SiPM-on-tile scintillator-steel hadronic calorimeter Type Journal Article
  Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 18 Issue (up) 11 Pages P11018 - 39pp  
  Keywords Calorimeters; Detector alignment and calibration methods (lasers, sources, par ticle- beams); Detector design and construction technologies and materials  
  Abstract The CALICE collaboration is developing highly granular electromagnetic and hadronic calorimeters for detectors at future energy frontier electron-positron colliders. After successful tests of a physics prototype, a technological prototype of the Analog Hadron Calorimeter has been built, based on a design and construction techniques scalable to a collider detector. The prototype consists of a steel absorber structure and active layers of small scintillator tiles that are individually read out by directly coupled SiPMs. Each layer has an active area of 72 x 72 cm2 and a tile size of 3 x 3 cm2. With 38 active layers, the prototype has nearly 22, 000 readout channels, and its total thickness amounts to 4.4 nuclear interaction lengths. The dedicated readout electronics provide time stamping of each hit with an expected resolution of about 1 ns. The prototype was constructed in 2017 and commissioned in beam tests at DESY. It recorded muons, hadron showers and electron showers at different energies in test beams at CERN in 2018. In this paper, the design of the prototype, its construction and commissioning are described. The methods used to calibrate the detector are detailed, and the performance achieved in terms of uniformity and stability is presented.  
  Address [White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001127235400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5874  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jaimes Elles, S.J.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Rebollo De Miguel, M.; Sanderswood, I.; Zhuo, J. url  doi
openurl 
  Title Curvature-bias corrections using a pseudomass method Type Journal Article
  Year 2024 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 19 Issue (up) 3 Pages P03010 - 22pp  
  Keywords Analysis and statistical methods; Detector alignment and calibration methods (lasers, sources, particle-beams); Large detector-systems performance; Performance of High Energy Physics Detectors  
  Abstract Momentum measurements for very high momentum charged particles, such as muons from electroweak vector boson decays, are particularly susceptible to charge-dependent curvature biases that arise from misalignments of tracking detectors. Low momentum charged particles used in alignment procedures have limited sensitivity to coherent displacements of such detectors, and therefore are unable to fully constrain these misalignments to the precision necessary for studies of electroweak physics. Additional approaches are therefore required to understand and correct for these effects. In this paper the curvature biases present at the LHCb detector are studied using the pseudomass method in proton-proton collision data recorded at centre of mass energy root s = 13 TeV during 2016, 2017 and 2018. The biases are determined using Z -> mu(+)mu(-) decays in intervals defined by the data-taking period, magnet polarity and muon direction. Correcting for these biases, which are typically at the 10(-4) GeV-1 level, improves the Z -> mu(+)mu(-) mass resolution by roughly 18% and eliminates several pathological trends in the kinematic-dependence of the mean dimuon invariant mass.  
  Address [Egede, U.; Fujii, Y.; Hadavizadeh, T.; Henderson, R. D. L.; Lane, J. J.; Monk, M.; Song, R.; Walton, E. J.; Ward, J. A.] Monash Univ, Sch Phys & Astron, Melbourne, Vic, Australia, Email: seophine.stanislaus@cern.ch  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001190907900003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6057  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Martinez-Vidal, F.; Oyanguren, A.; Ruiz Valls, P.; Sanchez Mayordomo, C. url  doi
openurl 
  Title LHCb detector performance Type Journal Article
  Year 2015 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 30 Issue (up) 7 Pages 1530022 - 73pp  
  Keywords Large detector systems for particle and astroparticle physics; particle tracking detectors; gaseous detectors; calorimeters; Cherenkov detectors; particle identification methods; detector alignment and calibration methods; trigger; LHC  
  Abstract The LHCb detector is a forward spectrometer at the Large Hadron Collider (LHC) at CERN. The experiment is designed for precision measurements of CP violation and rare decays of beauty and charm hadrons. In this paper the performance of the various LHCb sub-detectors and the trigger system are described, using data taken from 2010 to 2012. It is shown that the design criteria of the experiment have been met. The excellent performance of the detector has allowed the LHCb collaboration to publish a wide range of physics results, demonstrating LHCb's unique role, both as a heavy flavour experiment and as a general purpose detector in the forward region.  
  Address [Bediaga, I.; De Miranda, J. M.; Rodrigues, F. Ferreira; Gomes, A.; Massafferri, A.; dos Reis, A. C.; Rodrigues, A. B.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000350814000002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2151  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva