toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Barenboim, G.; Fernandez-Martinez, E.; Mena, O.; Verde, L. url  doi
openurl 
  Title The dark side of curvature Type Journal Article
  Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue (up) 3 Pages 008 - 17pp  
  Keywords dark energy experiments; baryon acoustic oscillations; cosmological parameters from CMBR  
  Abstract Geometrical tests such as the combination of the Hubble parameter H(z) and the angular diameter distance d(A)(z) can, in principle, break the degeneracy between the dark energy equation of state parameter w(z), and the spatial curvature Omega(k) in a direct, model-independent way. In practice, constraints on these quantities achievable from realistic experiments, such as those to be provided by Baryon Acoustic Oscillation (BAO) galaxy surveys in combination with CMB data, can resolve the cosmic confusion between the dark energy equation of state parameter and curvature only statistically and within a parameterized model for w(z). Combining measurements of both H(z) and d(A)(z) up to sufficiently high redshifts z similar to 2 and employing a parameterization of the redshift evolution of the dark energy equation of state are the keys to resolve the w(z) – Omega(k) degeneracy.  
  Address [Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, E-46100 Valencia, Spain, Email: Gabriela.Barenboim@uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000276103000026 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 465  
Permanent link to this record
 

 
Author Blennow, M.; Dasgupta, B.; Fernandez-Martinez, E.; Rius, N. url  doi
openurl 
  Title Aidnogenesis via leptogenesis and dark sphalerons Type Journal Article
  Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue (up) 3 Pages 014 - 14pp  
  Keywords Cosmology of Theories beyond the SM; Beyond Standard Model; Neutrino Physics  
  Abstract We discuss aidnogenesis,(1) i.e. the generation of a dark matter asymmetry, via new sphaleron processes associated to an extra non-abelian gauge symmetry common to both the visible and the dark sectors. Such a theory can naturally produce an abundance of asymmetric dark matter which is of the same size as the lepton and baryon asymmetries, as suggested by the similar sizes of the observed baryonic and dark matter energy content, and provide a definite prediction for the mass of the dark matter particle. We discuss in detail a minimal realization in which the Standard Model is only extended by dark matter fermions which form “dark baryons” through an SU(3) interaction, and a (broken) horizontal symmetry that induces the new sphalerons. The dark matter mass is predicted to be similar to 6GeV, close to the region favored by DAMA and CoGeNT. Furthermore, a remnant of the horizontal symmetry should be broken at a lower scale and can also explain the Tevatron dimuon anomaly.  
  Address [Blennow, Mattias; Fernandez-Martinez, Enrique] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany, Email: blennow@mppmu.mpg.de  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000289295200014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 611  
Permanent link to this record
 

 
Author Vincent, A.C.; Fernandez Martinez, E.; Hernandez, P.; Mena, O.; Lattanzi, M. url  doi
openurl 
  Title Revisiting cosmological bounds on sterile neutrinos Type Journal Article
  Year 2015 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue (up) 4 Pages 006 - 23pp  
  Keywords particle physics – cosmology connection; cosmological neutrinos; cosmology of theories beyond the SM  
  Abstract We employ state-of-the art cosmological observables including supernova surveys and BAO information to provide constraints on the mass and mixing angle of a non-resonantly produced sterile neutrino species, showing that cosmology can effectively rule out sterile neutrinos which decay between BBN and the present day. The decoupling of an additional heavy neutrino species can modify the time dependence of the Universe's expansion between BBN and recombination and, in extreme cases, lead to an additional matter-dominated period; while this could naively lead to a younger Universe with a larger Hubble parameter, it could later be compensated by the extra radiation expected in the form of neutrinos from sterile decay. However, recombination-era observables including the Cosmic Microwave Background (CMB), the shift parameter R-CMB and the sound horizon r(s) from Baryon Acoustic Oscillations (BAO) severely constrain this scenario. We self-consistently include the full time-evolution of the coupled sterile neutrino and standard model sectors in an MCMC, showing that if decay occurs after BBN, the sterile neutrino is essentially bounded by the constraint sin(2) theta less than or similar to 0.026(m(s)/eV)(-2).  
  Address [Vincent, Aaron C.] Univ Durham, Dept Phys, IPPP, Durham DH1 3LE, England, Email: aaron.vincent@durham.ac.uk;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000355742500007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2261  
Permanent link to this record
 

 
Author Biggio, C.; Fernandez-Martinez, E.; Filaci, M.; Hernandez-Garcia, J.; Lopez-Pavon, J. url  doi
openurl 
  Title Global bounds on the Type-III Seesaw Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue (up) 5 Pages 022 - 33pp  
  Keywords Neutrino Physics; Beyond Standard Model  
  Abstract We derive general bounds on the Type-III Seesaw parameters from a global fit to flavor and electroweak precision data. We explore and compare three Type-III Seesaw realizations: a general scenario, where an arbitrary number of heavy triplets is integrated out without any further assumption, and the more constrained cases in which only 3 or 2 (minimal scenario) additional heavy states are included. The latter assumption implies rather non-trivial correlations in the Yukawa flavor structure of the model so as to reproduce the neutrino masses and mixings as measured in neutrino oscillations experiments and thus qualitative differences can be found with the more general scenario. In particular, we find that, while the bounds on most elements of the dimension 6 operator coefficients are of order 10(-4) for the general and 3-triplet cases, the 2-triplet scenario is more strongly constrained with bounds between 10(-5) and 10(-7) for the different flavours. We also discuss how these correlations affect the present CMS constraints on the Type-III Seesaw in the minimal 2-triplet scenario.  
  Address [Biggio, Carla; Filaci, Manuele] Univ Genoa, Dipartimento Fis, Via Dodecaneso 33, I-16146 Genoa, Italy, Email: carla.biggio@ge.infn.it;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000533907600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4400  
Permanent link to this record
 

 
Author Coloma, P.; Donini, A.; Fernandez-Martinez, E.; Hernandez, P. url  doi
openurl 
  Title Precision on leptonic mixing parameters at future neutrino oscillation experiments Type Journal Article
  Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue (up) 6 Pages 073 - 27pp  
  Keywords Neutrino Physics; CP violation; Standard Model  
  Abstract We perform a comparison of the different future neutrino oscillation experiments based on the achievable precision in the determination of the fundamental parameters theta(13) and the CP phase, delta, assuming that theta(13) is in the range indicated by the recent Daya Bay measurement. We study the non-trivial dependence of the error on delta on its true value. When matter effects are small, the largest error is found at the points where CP violation is maximal, and the smallest at the CP conserving points. The situation is different when matter effects are sizable. As a result of this effect, the comparison of the physics reach of different experiments on the basis of the CP discovery potential, as usually done, can be misleading. We have compared various proposed super-beam, beta-beam and neutrino factory setups on the basis of the relative precision of theta(13) and the error on delta. Neutrino factories, both high-energy or low-energy, outperform alternative beam technologies. An ultimate precision on theta(13) below 3% and an error on delta of <= 7 degrees at 1 sigma (1 d.o.f.) can be obtained at a neutrino factory.  
  Address [Coloma, P.] Virginia Tech, Dept Phys, Ctr Neutrino Phys, Blacksburg, VA 24061 USA, Email: coloma@vt.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000306416500074 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1141  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva