|   | 
Details
   web
Records
Author LHC BSM Reinterpretation Forum (Abdallah, W. et al); Mitsou, V.A.; Sanz, V.
Title Reinterpretation of LHC results for new physics: status and recommendations after run 2 Type Journal Article
Year 2020 Publication Scipost Physics Abbreviated Journal SciPost Phys.
Volume 9 Issue (up) 2 Pages 022 - 45pp
Keywords
Abstract We report on the status of efforts to improve the reinterpretation of searches and measurements at the LHC in terms of models for new physics, in the context of the LHC Reinterpretation Forum. We detail current experimental offerings in direct searches for new particles, measurements, technical implementations and Open Data, and provide a set of recommendations for further improving the presentation of LHC results in order to better enable reinterpretation in the future. We also provide a brief description of existing software reinterpretation frameworks and recent global analyses of new physics that make use of the current data.
Address [Abdallah, Waleed; Dutta, Juhi] Harish Chandra Res Inst HBNI, Allahabad 211019, Uttar Pradesh, India, Email: Andy.Buckley@glasgow.ac.uk;
Corporate Author Thesis
Publisher Scipost Foundation Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2542-4653 ISBN Medium
Area Expedition Conference
Notes WOS:000573102600007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4547
Permanent link to this record
 

 
Author Horak, J.; Ihssen, F.; Papavassiliou, J.; Pawlowski, J.M.; Weber, A.; Wetterich, C.
Title Gluon condensates and effective gluon mass Type Journal Article
Year 2022 Publication Scipost Physics Abbreviated Journal SciPost Phys.
Volume 13 Issue (up) 2 Pages 042 - 40pp
Keywords
Abstract Lattice simulations along with studies in continuum QCD indicate that non-perturbative quantum fluctuations lead to an infrared regularisation of the gluon propagator in covariant gauges in the form of an effective mass-like behaviour. In the present work we propose an analytic understanding of this phenomenon in terms of gluon condensation through a dynamical version of the Higgs mechanism, leading to the emergence of color condensates. Within the functional renormalisation group approach we compute the effective potential of covariantly constant field strengths, whose non-trivial minimum is related to the color condensates. In the physical case of an SU(3) gauge group this is an octet condensate. The value of the gluon mass obtained through this procedure compares very well to lattice results and the mass gap arising from alternative dynamical scenarios.
Address [Horak, Jan; Ihssen, Friederike; Pawlowski, Jan M.; Weber, Axel; Wetterich, Christof] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany
Corporate Author Thesis
Publisher Scipost Foundation Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2542-4653 ISBN Medium
Area Expedition Conference
Notes WOS:000863121000008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5379
Permanent link to this record
 

 
Author Khosa, C.K.; Sanz, V.
Title Anomaly Awareness Type Journal Article
Year 2023 Publication Scipost Physics Abbreviated Journal SciPost Phys.
Volume 15 Issue (up) 2 Pages 053 - 24pp
Keywords
Abstract We present a new algorithm for anomaly detection called Anomaly Awareness. The algorithm learns about normal events while being made aware of the anomalies through a modification of the cost function. We show how this method works in different Particle Physics situations and in standard Computer Vision tasks. For example, we apply the method to images from a Fat Jet topology generated by Standard Model Top and QCD events, and test it against an array of new physics scenarios, including Higgs production with EFT effects and resonances decaying into two, three or four subjets. We find that the algorithm is effective identifying anomalies not seen before, and becomes robust as we make it aware of a varied-enough set of anomalies.
Address [Khosa, Charanjit K.] Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, England
Corporate Author Thesis
Publisher Scipost Foundation Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2542-4653 ISBN Medium
Area Expedition Conference
Notes WOS:001048488200002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5610
Permanent link to this record
 

 
Author Doring, C.; Centelles Chulia, S.; Lindner, M.; Schaefer, B.M.; Bartelmann, M.
Title Gravitational wave induced baryon acoustic oscillations Type Journal Article
Year 2022 Publication Scipost Physics Abbreviated Journal SciPost Phys.
Volume 12 Issue (up) 3 Pages 114 - 47pp
Keywords
Abstract We study the impact of gravitational waves originating from a first order phase transition on structure formation. To do so, we perform a second order perturbation analysis in the 1 + 3 covariant framework and derive a wave equation in which second order, adiabatic density perturbations of the photon-baryon fluid are sourced by the gravitational wave energy density during radiation domination and on sub-horizon scales. The scale on which such waves affect the energy density perturbation spectrum is found to be proportional to the horizon size at the time of the phase transition times its inverse duration. Consequently, structure of the size of galaxies and bigger can only be affected in this way by relatively late phase transitions at >= 10(6) s. Using cosmic variance as a bound we derive limits on the strength a and the relative duration (beta/H-*)(-1) of phase transitions as functions of the time of their occurrence which results in a new exclusion region for the energy density in gravitational waves today. We find that the cosmic variance bound forbids only relative long lasting phase transitions, e.g. beta/H-* less than or similar to 6.8 for t(*) approximate to 5 x 10(11 )s, which exhibit a substantial amount of supercooling alpha > 20 to affect the matter power spectrum.
Address [Doering, Christian; Lindner, Manfred] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany, Email: cdoering@mpi-hd.mpg.de;
Corporate Author Thesis
Publisher Scipost Foundation Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2542-4653 ISBN Medium
Area Expedition Conference
Notes WOS:000782238100035 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5201
Permanent link to this record
 

 
Author Baamara, Y.; Gessner, M.; Sinatra, A.
Title Quantum-enhanced multiparameter estimation and compressed sensing of a field Type Journal Article
Year 2023 Publication Scipost Physics Abbreviated Journal SciPost Phys.
Volume 14 Issue (up) 3 Pages 050 - 18pp
Keywords
Abstract We show that a significant quantum gain corresponding to squeezed or over-squeezed spin states can be obtained in multiparameter estimation by measuring the Hadamard coefficients of a 1D or 2D signal. The physical platform we consider consists of twolevel atoms in an optical lattice in a squeezed-Mott configuration, or more generally by correlated spins distributed in spatially separated modes. Our protocol requires the possibility to locally flip the spins, but relies on collective measurements. We give examples of applications to scalar or vector field mapping and compressed sensing.
Address [Baamara, Youcef; Sinatra, Alice] Univ PSL, Univ Sorbonne, ENS, Lab Kastler Brossel,CNRS, 24 Rue Lhomond, F-75231 Paris, France, Email: alice.sinatra@lkb.ens.fr
Corporate Author Thesis
Publisher Scipost Foundation Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2542-4653 ISBN Medium
Area Expedition Conference
Notes WOS:000974981200008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5519
Permanent link to this record