|   | 
Details
   web
Records
Author Degiovanni, A.; Wuensch, W.; Giner Navarro, J.
Title Comparison of the conditioning of high gradient accelerating structures Type Journal Article
Year 2016 Publication Physical Review Accelerators and Beams Abbreviated Journal Phys. Rev. Accel. Beams
Volume 19 Issue (up) 3 Pages 032001 - 6pp
Keywords
Abstract Accelerating gradients in excess of 100 MV/m, at very low breakdown rates, have been successfully achieved in numerous prototype CLIC accelerating structures. The conditioning and operational histories of several structures, tested at KEK and CERN, have been compared and there is clear evidence that the conditioning progresses with the number of rf pulses and not with the number of breakdowns. This observation opens the possibility that the optimum conditioning strategy, which minimizes the total number of breakdowns the structure is subject to without increasing conditioning time, may be to never exceed the breakdown rate target for operation. The result is also likely to have a strong impact on efforts to understand the physical mechanism underlying conditioning and may lead to preparation procedures which reduce conditioning time.
Address [Degiovanni, Alberto; Wuensch, Walter] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland, Email: walter.wuensch@cern.ch
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9888 ISBN Medium
Area Expedition Conference
Notes WOS:000400274700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3090
Permanent link to this record
 

 
Author Argyropoulos, T.; Catalan-Lasheras, N.; Grudiev, A.; Mcmonagle, G.; Rodriguez-Castro, E.; Syrachev, I.; Wegner, R.; Woolley, B.; Wuensch, W.; Zha, H.; Dolgashev, V.; Bowden, G.; Haase, A.; Lucas, T.G.; Volpi, M.; Esperante-Pereira, D.; Rajamaki, R.
Title Design, fabrication, and high-gradient testing of an X-band, traveling-wave accelerating structure milled from copper halves Type Journal Article
Year 2018 Publication Physical Review Accelerators and Beams Abbreviated Journal Phys. Rev. Accel. Beams
Volume 21 Issue (up) 6 Pages 061001 - 11pp
Keywords
Abstract A prototype 11.994 GHz, traveling-wave accelerating structure for the Compact Linear Collider has been built, using the novel technique of assembling the structure from milled halves. The use of milled halves has many advantages when compared to a structure made from individual disks. These include the potential for a reduction in cost, because there are fewer parts, as well as a greater freedom in choice of joining technology because there are no rf currents across the halves' joint. Here we present the rf design and fabrication of the prototype structure, followed by the results of the high-power test and post-test surface analysis. During high-power testing the structure reached an unloaded gradient of 100 MV/m at a rf breakdown rate of less than 1.5 x 10(-5) breakdowns/pulse/m with a 200 ns pulse. This structure has been designed for the CLIC testing program but construction from halves can be advantageous in a wide variety of applications.
Address [Argyropoulos, Theodoros; Catalan-Lasheras, Nuria; Grudiev, Alexej; Mcmonagle, Gerard; Rodriguez-Castro, Enrique; Syrachev, Igor; Wegner, Rolf; Woolley, Ben; Wuensch, Walter; Zha, Hao] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland, Email: thomas.geoffrey.lucas@cern.ch
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9888 ISBN Medium
Area Expedition Conference
Notes WOS:000434469900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3608
Permanent link to this record
 

 
Author Melcon, A.A.; Cuendis, S.A.; Cogollos, C.; Diaz-Morcillo, A.; Dobrich, B.; Gallego, J.D.; Barcelo, J.M.G.; Gimeno, B.; Golm, J.; Irastorza, I.G.; Lozano-Guerrero, A.J.; Malbrunot, C.; Millar, A.; Navarro, P.; Garay, C.P.; Redondo, J.; Wuensch, W.
Title Scalable haloscopes for axion dark matter detection in the 30 μeV range with RADES Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue (up) 7 Pages 084 - 28pp
Keywords Dark matter; Dark Matter and Double Beta Decay (experiments)
Abstract RADES (Relic Axion Detector Exploratory Setup) is a project with the goal of directly searching for axion dark matter above the 30 μeV scale employing custom-made microwave filters in magnetic dipole fields. Currently RADES is taking data at the LHC dipole of the CAST experiment. In the long term, the RADES cavities are envisioned to take data in the BabyIAXO magnet. In this article we report on the modelling, building and characterisation of an optimised microwave-filter design with alternating irises that exploits maximal coupling to axions while being scalable in length without suffering from mode-mixing. We develop the mathematical formalism and theoretical study which justifies the performance of the chosen design. We also point towards the applicability of this formalism to optimise the MADMAX dielectric haloscopes.
Address [Alvarez Melcon, A.; Diaz-Morcillo, A.; Garcia Barcelo, J. M.; Lozano-Guerrero, A. J.; Navarro, P.] Tech Univ Cartagena, Dept Informat & Commun Technol, Murcia 30203, Spain, Email: alejandro.alvarez@upct.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000553158400002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4478
Permanent link to this record
 

 
Author Vnuchenko, A.; Esperante Pereira, D.; Gimeno, B.; Benedetti, S.; Catalan Lasheras, N.; Garlasch, M.; Grudiev, A.; McMonagle, G.; Pitman, S.; Syratchev, I.; Timmins, M.; Wegner, R.; Woolley, B.; Wuensch, W.; Faus-Golfe, A.
Title High-gradient testing of an S-band, normal-conducting low phase velocity accelerating structure Type Journal Article
Year 2020 Publication Physical Review Accelerators and Beams Abbreviated Journal Phys. Rev. Accel. Beams
Volume 23 Issue (up) 8 Pages 084801 - 13pp
Keywords
Abstract A novel high-gradient accelerating structure with low phase velocity, v/c = 0.38, has been designed, manufactured and high-power tested. The structure was designed and built using the methodology and technology developed for CLIC 100 MV/m high-gradient accelerating structures, which have speed of light phase velocity, but adapts them to a structure for nonrelativistic particles. The parameters of the structure were optimized for the compact proton therapy linac project, and specifically to 76 MeV energy protons, but the type of structure opens more generally the possibility of compact low phase velocity linacs. The structure operates in S-band, is backward traveling wave (BTW) with a phase advance of 150 degrees and has an active length of 19 cm. The main objective for designing and testing this structure was to demonstrate that low velocity particles, in particular protons, can be accelerated with high gradients. In addition, the performance of this structure compared to other type of structures provides insights into the factors that limit high gradient operation. The structure was conditioned successfully to high gradient using the same protocol as for CLIC X-band structures. However, after the high power test, data analysis realized that the structure had been installed backwards, that is, the input power had been fed into what is nominally the output end of the structure. This resulted in higher peak fields at the power feed end and a steeply decreasing field profile along the structure, rather than the intended near constant field and gradient profile. A local accelerating gradient of 81 MV/m near the input end was achieved at a pulse length of 1.2 μs and with a breakdown rate (BDR) of 7.2 x 10(-7) 1 /pulse/m. The reverse configuration was accidental but the operating with this field condition gave very important insights into high-gradient behaviour and a comprehensive analysis has been carried out. A particular attention was paid to the characterization of the distribution of BD positions along the structure and within a cell.
Address [Vnuchenko, A.; Esperante Pereira, D.; Gimeno Martinez, B.] Inst Fsica Corpuscular IFIC, Valencia 46980, Spain, Email: anna.vnuchenko@cern.ch
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9888 ISBN Medium
Area Expedition Conference
Notes WOS:000582958800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4584
Permanent link to this record