|   | 
Details
   web
Records
Author Escudero, M.; Rius, N.; Sanz, V.
Title Sterile neutrino portal to Dark Matter II: exact dark symmetry Type Journal Article
Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 77 Issue (down) 6 Pages 397 - 11pp
Keywords
Abstract We analyze a simple extension of the standard model (SM) with a dark sector composed of a scalar and a fermion, both singlets under the SM gauge group but charged under a dark sector symmetry group. Sterile neutrinos, which are singlets under both groups, mediate the interactions between the dark sector and the SM particles, and generate masses for the active neutrinos via the seesaw mechanism. We explore the parameter space region where the observed Dark Matter relic abundance is determined by the annihilation into sterile neutrinos, both for fermion and scalar Dark Matter particles. The scalar Dark Matter case provides an interesting alternative to the usual Higgs portal scenario. We also study the constraints from direct Dark Matter searches and the prospects for indirect detection via sterile neutrino decays to leptons, which may be able to rule out Dark Matter masses below and around 100 GeV.
Address [Escudero, Miguel; Rius, Nuria] Univ Valencia, CSIC, Dept Fis Teor, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: miguel.escudero@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000403504200002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3171
Permanent link to this record
 

 
Author Khosa, C.K.; Sanz, V.; Soughton, M.
Title Using machine learning to disentangle LHC signatures of Dark Matter candidates Type Journal Article
Year 2021 Publication Scipost Physics Abbreviated Journal SciPost Phys.
Volume 10 Issue (down) 6 Pages 151 - 26pp
Keywords
Abstract We study the prospects of characterising Dark Matter at colliders using Machine Learning (ML) techniques. We focus on the monojet and missing transverse energy (MET) channel and propose a set of benchmark models for the study: a typical WIMP Dark Matter candidate in the form of a SUSY neutralino, a pseudo-Goldstone impostor in the shape of an Axion-Like Particle, and a light Dark Matter impostor whose interactions are mediated by a heavy particle. All these benchmarks are tensioned against each other, and against the main SM background (Z+jets). Our analysis uses both the leading-order kinematic features as well as the information of an additional hard jet. We explore different representations of the data, from a simple event data sample with values of kinematic variables fed into a Logistic Regression algorithm or a Fully Connected Neural Network, to a transformation of the data into images related to probability distributions, fed to Deep and Convolutional Neural Networks. We also study the robustness of our method against including detector effects, dropping kinematic variables, or changing the number of events per image. In the case of signals with more combinatorial possibilities (events with more than one hard jet), the most crucial data features are selected by performing a Principal Component Analysis. We compare the performance of all these methods, and find that using the 2D images of the combined information of multiple events significantly improves the discrimination performance.
Address [Khosa, Charanjit Kaur; Sanz, Veronica; Soughton, Michael] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England, Email: Charanjit.Kaur@sussex.ac.uk;
Corporate Author Thesis
Publisher Scipost Foundation Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2542-4653 ISBN Medium
Area Expedition Conference
Notes WOS:000680038800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4927
Permanent link to this record
 

 
Author Sanchis-Lozano, M.A.; Sanz, V.
Title Observable imprints of primordial gravitational waves on the temperature anisotropies of the cosmic microwave background Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue (down) 6 Pages 063529 - 11pp
Keywords
Abstract We examine the contribution of tensor modes, in addition to the dominant scalar ones, on the temperature anisotropies of the cosmic microwave background (CMB). To this end, we analyze in detail the temperature two -point angular correlation function C(Theta) from the Planck 2018 dataset, focusing on large angles (Theta greater than or similar to 120 degrees) corresponding to small l multipoles. A hierarchical set of infrared cutoffs are naturally introduced to the scalar and tensor power spectra of the CMB by invoking an extra Kaluza-Klein spatial dimension compactifying at about the grand unified theory scale between the Planck epoch and the start of inflation. We associate this set of lower scalar and tensor cutoffs with the parity of the multipole expansion of the C(Theta) function. By fitting the Planck 2018 data we compute the multipole coefficients, thereby reproducing the well-known odd -parity preference in angular correlations seen by all three satellite missions: Cosmic Background Explorer, WMAP, and Planck. Our fits improve significantly once tensor modes are included in the analysis, hence providing a hint of the imprints of primordial gravitational waves on the temperature correlations observed in the CMB today. To conclude, we suggest a relationship between, on the one hand, the lack of (positive) large -angle correlations and the odd -parity dominance in the CMB and, on the other hand, the effect of primordial gravitational waves on the CMB temperature anisotropies.
Address [Sanchis-Lozano, Miguel -Angel; Sanz, Veronica] Univ Valencia, Dept Fis Teor, CSIC, Valencia 46100, Spain, Email: miguel.angel.sanchis@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001195716600006 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 6038
Permanent link to this record
 

 
Author Ellis, J.; Madigan, M.; Mimasu, K.; Sanz, V.; You, T.
Title Top, Higgs, diboson and electroweak fit to the Standard Model effective field theory Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue (down) 4 Pages 279 - 78pp
Keywords Effective Field Theories; Beyond Standard Model; Higgs Physics
Abstract The search for effective field theory deformations of the Standard Model (SM) is a major goal of particle physics that can benefit from a global approach in the framework of the Standard Model Effective Field Theory (SMEFT). For the first time, we include LHC data on top production and differential distributions together with Higgs production and decay rates and Simplified Template Cross-Section (STXS) measurements in a global fit, as well as precision electroweak and diboson measurements from LEP and the LHC, in a global analysis with SMEFT operators of dimension 6 included linearly. We present the constraints on the coefficients of these operators, both individually and when marginalised, in flavour-universal and top-specific scenarios, studying the interplay of these datasets and the correlations they induce in the SMEFT. We then explore the constraints that our linear SMEFT analysis imposes on specific ultra-violet completions of the Standard Model, including those with single additional fields and low-mass stop squarks. We also present a model-independent search for deformations of the SM that contribute to between two and five SMEFT operator coefficients. In no case do we find any significant evidence for physics beyond the SM. Our underlying Fitmaker public code provides a framework for future generalisations of our analysis, including a quadratic treatment of dimension-6 operators.
Address [Ellis, John; Mimasu, Ken] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London WC2R 2LS, England, Email: john.ellis@cern.ch;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000658918100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4857
Permanent link to this record
 

 
Author Khosa, C.K.; Sanz, V.; Soughton, M.
Title A simple guide from machine learning outputs to statistical criteria in particle physics Type Journal Article
Year 2022 Publication Scipost Physics Core Abbreviated Journal SciPost Phys. Core
Volume 5 Issue (down) 4 Pages 050 - 31pp
Keywords
Abstract In this paper we propose ways to incorporate Machine Learning training outputs into a study of statistical significance. We describe these methods in supervised classification tasks using a CNN and a DNN output, and unsupervised learning based on a VAE. As use cases, we consider two physical situations where Machine Learning are often used: high-pT hadronic activity, and boosted Higgs in association with a massive vector boson.
Address [Khosa, Charanjit Kaur] Univ Bristol, HH Wills Phys Lab, Tyndall Ave, Bristol BS8 1TL, Avon, England, Email: Charanjit.Kaur@bristol.ac.uk;
Corporate Author Thesis
Publisher Scipost Foundation Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000929724800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5475
Permanent link to this record