|   | 
Details
   web
Records
Author Sobczyk, J.E.; Hernandez, E.; Nakamura, S.X.; Nieves, J.; Sato, T.
Title Angular distributions in electroweak pion production off nucleons: Odd parity hadron terms, strong relative phases, and model dependence Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 98 Issue (down) 7 Pages 073001 - 39pp
Keywords
Abstract The study of pion production in nuclei is important for signal and background determinations in current and future neutrino oscillation experiments. The first step, however, is to understand the pion production reactions at the free nucleon level. We present an exhaustive study of the charged-current and neutral-current neutrino and antineutrino pion production off nucleons, paying special attention to the angular distributions of the outgoing pion. We show, using general arguments, that parity violation and time-reversal odd correlations in the weak differential cross sections are generated from the interference between different contributions to the hadronic current that are not relatively real. Next, we present a detailed comparison of three state-of-the-art, microscopic models for electroweak pion production off nucleons, and we also confront their predictions with polarized electron data, as a test of the vector content of these models. We also illustrate the importance of carrying out a comprehensive test at the level of outgoing pion angular distributions, going beyond comparisons done for partially integrated cross sections, where model differences cancel to a certain extent. Finally, we observe that all charged and neutral current distributions show sizable anisotropies, and identify channels for which parity-violating effects are clearly visible. Based on the above results, we conclude that the use of isotropic distributions for the pions in the center of mass of the final pion-nucleon system, as assumed by some of the Monte Carlo event generators, needs to be improved by incorporating the findings of microscopic calculations.
Address [Sobczyk, J. E.; Nieves, J.] Univ Valencia, Ctr Mixto CSIC, Inst Fis Corpuscular IFIC, Inst Invest Paterna, Apartado 22085, E-46071 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000446557200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3751
Permanent link to this record
 

 
Author Penalva, N.; Hernandez, E.; Nieves, J.
Title New physics and the tau polarization vector in b -> c tau barnutau decays Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue (down) 6 Pages 118 - 37pp
Keywords Beyond Standard Model; CP violation
Abstract For a general H-b -> Hc tau nu <overbar></mml:mover>tau decay we analyze the role of the tau polarization vector P μin the context of lepton flavor universality violation studies. We use a general phenomenological approach that includes, in addition to the Standard Model (SM) contribution, vector, axial, scalar, pseudoscalar and tensor new physics (NP) terms which strength is governed by, complex in general, Wilson coefficients. We show that both in the laboratory frame, where the initial hadron is at rest, and in the center of mass of the two final leptons, a P -></mml:mover> component perpendicular to the plane defined by the three-momenta of the final hadron and the tau lepton is only possible for complex Wilson coefficients, being a clear signal for physics beyond the SM as well as time reversal (or CP-symmetry) violation. We make specific evaluations of the different polarization vector components for the Lambda (b) -> Lambda (c), <mml:mover accent=“true”>B<mml:mo stretchy=“true”><overbar></mml:mover>c -> eta (c), J/psi and <mml:mover accent=“true”>B<mml:mo stretchy=“true”><overbar></mml:mover> -> D-(*) semileptonic decays, and describe NP effects in the complete two-dimensional space associated with the independent kinematic variables on which the polarization vector depends. We find that the detailed study of P μhas great potential to discriminate between different NP scenarios for 0(-) -> 0(-) decays, but also for Lambda (b) -> Lambda (c) transitions. For this latter reaction, we pay special attention to corrections to the SM predictions derived from complex Wilson coefficients contributions.
Address [Penalva, Neus; Nieves, Juan] Ctr Mixto CSIC UV, Inst Invest Paterna, Inst Fis Corpuscular, Apartado 22085, Valencia 46071, Spain, Email: Neus.Penalva@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000664505100002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4882
Permanent link to this record
 

 
Author Hernandez, E.; Nieves, J.
Title Study of the strong Sigma(b) -> Lambda(b)pi and Sigma*(b) -> Lambda(b)pi in a nonrelativistic quark model Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 84 Issue (down) 5 Pages 057902 - 5pp
Keywords
Abstract We present results for the strong widths corresponding to the Sigma(b) -> Lambda(b)pi and Sigma*(b) -> Lambda(b)pi decays. We apply our model from Phys. Rev. D 72, 094022 (2005), where we previously studied the corresponding transitions in the charmed sector. Our nonrelativistic constituent quark model uses wave functions that take advantage of the constraints imposed by heavy quark symmetry. The partial conservation of axial current hypothesis allows us to determine the strong vertices from an analysis of the axial current matrix elements.
Address [Hernandez, E] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000295327700002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 776
Permanent link to this record
 

 
Author Albertus, C.; Hernandez, E.; Nieves, J.
Title Exclusive c -> s, d semileptonic decays of ground-state spin-1/2 doubly charmed baryons Type Journal Article
Year 2011 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 704 Issue (down) 5 Pages 499-509
Keywords
Abstract We evaluate exclusive semileptonic decays of ground-state spin-1/2 doubly heavy charmed baryons driven by a c -> s, d transition at the quark level. Our results for the form factors are consistent with heavy quark spin symmetry constraints which are valid in the limit of an infinitely massive charm quark and near zero recoil. Only a few exclusive semileptonic decay channels have been theoretically analyzed before. For those cases we find that our results are in a reasonable agreement with previous calculations.
Address [Albertus, C.; Hernandez, E.] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain, Email: gajatee@usal.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000296549200017 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 828
Permanent link to this record
 

 
Author Hernandez, E.; Nieves, J.
Title Neutrino-induced one-pion production revisited: The nu(mu)n -> mu(-)n pi(+) channel Type Journal Article
Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 95 Issue (down) 5 Pages 053007 - 18pp
Keywords
Abstract Understanding single pion production reactions on free nucleons is the first step towards a correct description of these processes in nuclei, which are important for signal and background contributions in current and near future accelerator neutrino oscillation experiments. In this work, we reanalyze our previous studies of neutrino-induced one-pion production on nucleons for outgoing pi N invariant masses below 1.4 GeV. Our motivation is to get a better description of the nu(mu)n -> mu(-)n pi(+) cross section, for which current theoretical models give values significantly below data. This channel is very sensitive to the crossed Delta(1232) contribution and thus, to spin 1/2 components in the Rarita-Schwinger Delta propagator. We show how these spin 1/2 components are nonpropagating and give rise to contact interactions. In this context, we point out that the discrepancy with experiment might be corrected by the addition of appropriate extra contact terms and argue that this procedure will provide a natural solution to the nu(mu)n -> mu(-)n pi(+) puzzle. To keep our model simple, in this work, we propose to change the strength of the spin 1/2 components in the. propagator and use the nu(mu)n -> mu(-)n pi(+) data to constraint its value. With this modification, we now find a good reproduction of the nu(mu)n -> mu(-)n pi(+) cross section without affecting the good results previously obtained for the other channels. We also explore how this change in the. propagator affects our predictions for pion photoproduction and find also a better agreement with experiment than with the previous model.
Address [Hernandez, E.] Univ Salamanca, Dept Fis, E-37008 Salamanca, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000399255000001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3055
Permanent link to this record