toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gariazzo, S.; Mena, O. url  doi
openurl 
  Title Cosmology-marginalized approaches in Bayesian model comparison: The neutrino mass as a case study Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue (up) 2 Pages 021301 - 6pp  
  Keywords  
  Abstract We propose here a novel method which singles out the a priori unavoidable dependence on the underlying cosmological model when extracting parameter constraints, providing robust limits which only depend on the considered dataset. Interestingly, when dealing with several possible cosmologies and interpreting the Bayesian preference in terms of the Gaussian statistical evidence, the preferred model is much less favored than when only two cases are compared. As a working example, we apply our approach to the cosmological neutrino mass bounds, which play a fundamental role not only in establishing the contribution of relic neutrinos to the dark matter of the Universe but also in the planning of future experimental searches of the neutrino character and of the neutrino mass ordering.  
  Address [Gariazzo, S.; Mena, O.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Valencia, Spain, Email: gariazzo@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000456800000001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3893  
Permanent link to this record
 

 
Author Delhom, A.; Macedo, C.F.B.; Olmo, G.J.; Crispino, L.C.B. url  doi
openurl 
  Title Absorption by black hole remnants in metric-affine gravity Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 100 Issue (up) 2 Pages 024016 - 12pp  
  Keywords  
  Abstract Using numerical methods, we investigate the absorption properties of a family of nonsingular solutions which arise in different metric-affine theories, such as quadratic and Born-Infeld gravity. These solutions continuously interpolate between Schwarzschild black holes and naked solitons with wormhole topology. The resulting spectrum is characterized by a series of quasibound states excitations, associated with the existence of a stable photonsphere.  
  Address [Delhom, Adria; Olmo, Gonzalo J.] Univ Valencia, Dept Fis Teor, Ctr Mixto Univ Valencia CSIC, E-46100 Valencia, Spain, Email: adna.delhom@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000474874900007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4075  
Permanent link to this record
 

 
Author Yang, W.Q.; Di Valentino, E.; Mena, O.; Pan, S. url  doi
openurl 
  Title Dynamical dark sectors and neutrino masses and abundances Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 102 Issue (up) 2 Pages 023535 - 17pp  
  Keywords  
  Abstract We investigate generalized interacting dark matter-dark energy scenarios with a time-dependent coupling parameter, allowing also for freedom in the neutrino sector. The models are tested in the phantom and quintessence regimes, characterized by equations of state, w(x) < -1 and w(x) > -1, respectively. Our analyses show that for some of the scenarios, the existing tensions on the Hubble constant H-0 and on the clustering parameter S-8 can be significantly alleviated. The relief is either due to (a) a dark energy component which lies within the phantom region or (b) the presence of a dynamical coupling in quintessence scenarios. The inclusion of massive neutrinos into the interaction schemes does not affect either the constraints on the cosmological parameters or the bounds on the total number or relativistic degrees of freedom N-eff, which are found to be extremely robust and, in general, strongly consistent with the canonical prediction N-eff = 3.045. The most stringent bound on the total neutrino mass M-nu is M-nu, < 0.116 eV and it is obtained within a quintessence scenario in which the matter mass-energy density is only mildly affected by the presence of a dynamical dark sector coupling.  
  Address [Yang, Weiqiang] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China, Email: d11102004@163.com;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000550997900008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4472  
Permanent link to this record
 

 
Author Ferreiro, A.; Nadal-Gisbert, S.; Navarro-Salas, J. url  doi
openurl 
  Title Renormalization, running couplings, and decoupling for the Yukawa model in a curved spacetime Type Journal Article
  Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 104 Issue (up) 2 Pages 025003 - 8pp  
  Keywords  
  Abstract The decoupling of heavy fields as required by the Appelquist-Carazzone theorem plays a fundamental role in the construction of any effective field theory. However, it is not a trivial task to implement a renormalization prescription that produces the expected decoupling of massive fields, and it is even more difficult in curved spacetime. Focused on this idea, we consider the renormalization of the one-loop effective action for the Yukawa interaction with a background scalar field in curved space. We compute the beta functions within a generalized DeWitt-Schwinger subtraction procedure and discuss the decoupling in the running of the coupling constants. For the case of a quantized scalar field, all the beta function exhibit decoupling, including also the gravitational ones. For a quantized Dirac field, decoupling appears almost for all the beta functions. We obtain the anomalous result that the mass of the background scalar field does not decouple.  
  Address [Ferreiro, Antonio; Nadal-Gisbert, Sergi; Navarro-Salas, Jose] Univ Valencia, Fac Fis, Dept Fis Teor, Valencia 46100, Spain, Email: antonio.ferreiro@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000669563900006 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4896  
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.; Wojnar, A. url  doi
openurl 
  Title Parameterized nonrelativistic limit of stellar structure equations in Ricci-based gravity theories Type Journal Article
  Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 104 Issue (up) 2 Pages 024045 - 8pp  
  Keywords  
  Abstract We present the nonrelativistic limit of the stellar structure equations of Ricci-based gravities, a family of metric-affine theories whose Lagrangian is built via contractions of the metric with the Ricci tensor of an a priori independent connection. We find that this limit is characterized by four parameters that arise in the expansion of several geometric quantities in powers of the stress-energy tensor of the matter fields. We discuss the relevance of this result for the phenomenology of nonrelativistic stars, such as main-sequence stars as well as several substellar objects.  
  Address [Olmo, Gonzalo J.] Univ Valencia, Dept Fis Teor, Ctr Mixto, CSIC, Valencia 46100, Spain, Email: gonzalo.olmo@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000674579300010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4914  
Permanent link to this record
 

 
Author Barenboim, G.; Nierste, U. url  doi
openurl 
  Title Modified majoron model for cosmological anomalies Type Journal Article
  Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 104 Issue (up) 2 Pages 023013 - 6pp  
  Keywords  
  Abstract The vacuum expectation value v(s) of a Higgs triplet field Delta carrying two units of lepton number L induces neutrino masses alpha v(s). The neutral component of Delta gives rise to two Higgs particles, a pseudoscalar A and a scalar S. The most general renormalizable Higgs potential V for Delta and the Standard-Model Higgs doublet Phi does not permit the possibility that the mass of either A or S is small, of order v(s), while the other mass is heavy enough to forbid the decay Z -> AS to comply with LEP 1 data. We present a model with additional dimension-6 terms in V, in which this feature is absent and either A or S can be chosen light. Subsequently we propose the model as a remedy to cosmological anomalies, namely the tension between observed and predicted tensor-to-scalar mode ratios in the cosmic microwave background and the different values of the Hubble constant measured at different cosmological scales. Furthermore, if Delta dominantly couples to the third-generation doublet L-tau = (v(tau), tau), the deficit of v(tau) events at IceCube can be explained. The singly and doubly charged triplet Higgs bosons are lighter than 280 GeV and 400 GeV, respectively, and could be found at the LHC.  
  Address [Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, Ave Doctor Moliner 50, E-46100 Valencia, Spain, Email: gabriela.barenboim@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000674578400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4915  
Permanent link to this record
 

 
Author Alvarez-Ortega, D.; Olmo, G.J.; Rubiera-Garcia, D.; Saez-Chillon Gomez, D. url  doi
openurl 
  Title Eternal versus singular observers in interacting dark-energy-dark-matter models Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue (up) 2 Pages 023523 - 14pp  
  Keywords  
  Abstract Interacting dark-energy-dark-matter models have been widely analyzed in the literature in an attempt to find traces of new physics beyond the usual cosmological (Lambda CDM) models. Such a coupling between both dark components is usually introduced in a phenomenological way through a flux in the continuity equation. However, models with a Lagrangian formulation are also possible. A class of the latter assumes a conformal/disformal coupling that leads to a fifth force on the dark-matter component, which consequently does not follow the same geodesics as the other (baryonic, radiation, and dark-energy) matter sources. Here we analyze how the usual cosmological singularities of the standard matter frame are seen from the dark-matter one, concluding that by choosing an appropriate coupling, dark-matter observers will see no singularities but a non beginning, non ending universe. By considering two simple phenomenological models we show that such a type of coupling can fit observational data as well as the usual Lambda CDM model.  
  Address [Alvarez-Ortega, Diego] Inst Fis Cantabria CSIC UC, Avda Castros S-N, Santander 39005, Spain, Email: diego.alvarezo@alumnos.unican.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000842768300012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5345  
Permanent link to this record
 

 
Author Gariazzo, S.; Di Valentino, E.; Mena, O.; Nunes, R.C. url  doi
openurl 
  Title Late-time interacting cosmologies and the Hubble constant tension Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue (up) 2 Pages 023530 - 12pp  
  Keywords ?CDM scenario; cosmic microwave background (CMB)  
  Abstract In this manuscript we reassess the potential of interacting dark matter-dark energy models in solving the Hubble constant tension. These models have been proposed but also questioned as possible solutions to the H0 problem. Here we examine several interacting scenarios against cosmological observations, focusing on the important role played by the calibration of supernovae data. In order to reassess the ability of interacting dark matter-dark energy scenarios in easing the Hubble constant tension, we systematically confront their theoretical predictions using a prior on the supernovae Ia absolute magnitude MB, which has been argued to be more robust and certainly less controversial than using a prior on the Hubble constant H0. While some data combinations do not show any preference for interacting dark sectors and in some of these scenarios the clustering sigma 8 tension worsens, interacting cosmologies with a dark energy equation of state w < -1 are preferred over the canonical lambda CDM picture even with cosmic microwave background data alone and also provide values of sigma 8 in perfect agreement with those from weak lensing surveys. Future cosmological surveys will test these exotic dark energy cosmologies by accurately measuring the dark energy equation of state and its putative redshift evolution.  
  Address [Gariazzo, Stefano] Ist Nazl Fis Nucleare INFN, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy, Email: gariazzo@to.infn.it;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000843205100006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5346  
Permanent link to this record
 

 
Author Silva, J.E.G.; Maluf, R.V.; Olmo, G.J.; Almeida, C.A.S. url  doi
openurl 
  Title Braneworlds in f(Q) gravity Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue (up) 2 Pages 024033 - 15pp  
  Keywords  
  Abstract We propose a braneworld scenario in a modified symmetric teleparallel gravitational theory, where the dynamics for the gravitational field is encoded in the nonmetricity tensor rather than in the curvature. Assuming a single real scalar field with a sine-Gordon self-interaction, the generalized quadratic nonmetricity invariant Q controls the brane width while keeping the shape of the energy density. By considering power corrections of the invariant Q in the gravitational Lagrangian, the sine-Gordon potential is modified exhibiting new barriers and false vacuum. As a result, the domain wall brane obtains an inner structure, and it undergoes a splitting process. In addition, we also propose a nonminimal coupling between a bulk fermion field and the nonmetricity invariant Q. Such geometric coupling leads to a massless chiral fermion bound to the 3-brane and a stable tower of nonlocalized massive states.  
  Address [Silva, J. E. G.] Univ Fed do Cariri UFCA, Ave Tenente Raimundo Rocha,Cidade Universitaria, BR-63048080 Juazeiro do Norte, CE, Brazil, Email: euclides.silva@ufca.edu.br;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000880673200004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5410  
Permanent link to this record
 

 
Author Magalhaes, R.B.; Maso-Ferrando, A.; Olmo, G.J.; Crispino, L.C.B. url  doi
openurl 
  Title Asymmetric wormholes in Palatini f (R) gravity: Energy conditions, absorption, and quasibound states Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 108 Issue (up) 2 Pages 024063 - 20pp  
  Keywords  
  Abstract We investigate the scalar absorption spectrum of wormhole solutions constructed via the recently developed thin-shell formalism for Palatini f(R) gravity. Such wormholes come from the matching of two Reissner-Nordstrom spacetimes at a timelike hypersurface (shell), which, according to the junction conditions in Palatini f(R), can be stable and have either positive or negative energy density. In particular, we identified a new physically interesting configuration made out of two overcharged Reissner-Nordstrom spacetimes, whose absorption profile departs from that of black holes and other previously considered wormholes in the whole range of frequencies. Unlike in symmetric wormhole solutions, the asymmetry of the effective potential causes the dilution of the resonances associated to the quasibound states for the high -frequency regime. Therefore, slight asymmetries in wormhole space-times could have a dramatic impact on the observable features associated to resonant states.  
  Address [Magalhaes, Renan B.; Crispino, Luis C. B.] Univ Fed, Programa Pos Graduacao Fis, BR-66075110 Belem, PA, Brazil, Email: renan.batalha@ext.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001055237800002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5629  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva