toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Martinelli, M.; Scarcella, F.; Hogg, N.B.; Kavanagh, B.J.; Gaggero, D.; Fleury, P. url  doi
openurl 
  Title Dancing in the dark: detecting a population of distant primordial black holes Type Journal Article
  Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 08 Issue (down) 8 Pages 006 - 47pp  
  Keywords dark matter theory; gravitational waves / experiments; gravitational waves / sources; primordial black holes  
  Abstract Primordial black holes (PBHs) are compact objects proposed to have formed in the early Universe from the collapse of small-scale over-densities. Their existence may be detected from the observation of gravitational waves (GWs) emitted by PBH mergers, if the signals can be distinguished from those produced by the merging of astrophysical black holes. In this work, we forecast the capability of the Einstein Telescope, a proposed third-generation GW observatory, to identify and measure the abundance of a subdominant population of distant PBHs, using the difference in the redshift evolution of the merger rate of the two populations as our discriminant. We carefully model the merger rates and generate realistic mock catalogues of the luminosity distances and errors that would be obtained from GW signals observed by the Einstein Telescope. We use two independent statistical methods to analyse the mock data, finding that, with our more powerful, likelihood-based method, PBH abundances as small as fPBH approximate to 7 x 10(-6) ( fPBH approximate to 2 x 10(-6)) would be distinguishable from f(PBH) = 0 at the level of 3 sigma with a one year (ten year) observing run of the Einstein Telescope. Our mock data generation code, darksirens, is fast, easily extendable and publicly available on GitLab.  
  Address [Martinelli, Matteo] INAF Osservatorio Astron Roma, Via Frascati 33, I-00040 Rome, Italy, Email: matteo.martinelli@inaf.it;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000911612900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5461  
Permanent link to this record
 

 
Author ATLAS Collaboration url  doi
openurl 
  Title A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery Type Journal Article
  Year 2022 Publication Nature Abbreviated Journal Nature  
  Volume 607 Issue (down) 7917 Pages 52-59  
  Keywords  
  Abstract The standard model of particle physics(1-4) describes the known fundamental particles and forces that make up our Universe, with the exception of gravity. One of the central features of the standard model is a field that permeates all of space and interacts with fundamental particles(5-9). The quantum excitation of this field, known as the Higgs field, manifests itself as the Higgs boson, the only fundamental particle with no spin. In 2012, a particle with properties consistent with the Higgs boson of the standard model was observed by the ATLAS and CMS experiments at the Large Hadron Collider at CERN10,11. Since then, more than 30 times as many Higgs bosons have been recorded by the ATLAS experiment, enabling much more precise measurements and new tests of the theory. Here, on the basis of this larger dataset, we combine an unprecedented number of production and decay processes of the Higgs boson to scrutinize its interactions with elementary particles. Interactions with gluons, photons, and W and Z bosons-the carriers of the strong, electromagnetic and weak forces-are studied in detail. Interactions with three third-generation matter particles (bottom (b) and top (t) quarks, and tau leptons (tau)) are well measured and indications of interactions with a second-generation particle (muons, mu) are emerging. These tests reveal that the Higgs boson discovered ten years ago is remarkably consistent with the predictions of the theory and provide stringent constraints on many models of new phenomena beyond the standard model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000820564200004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5521  
Permanent link to this record
 

 
Author MoEDAL Collaboration (Acharya, B. et al); Mitsou, V.A.; Papavassiliou, J.; Ruiz de Austri, R.; Santra, A.; Vento, V.; Vives, O. url  doi
openurl 
  Title Search for magnetic monopoles produced via the Schwinger mechanism Type Journal Article
  Year 2022 Publication Nature Abbreviated Journal Nature  
  Volume 602 Issue (down) 7895 Pages 63-67  
  Keywords  
  Abstract Electrically charged particles can be created by the decay of strong enough electric fields, a phenomenon known as the Schwinger mechanism(1). By electromagnetic duality, a sufficiently strong magnetic field would similarly produce magnetic monopoles, if they exist(2). Magnetic monopoles are hypothetical fundamental particles that are predicted by several theories beyond the standard model(3-7) but have never been experimentally detected. Searching for the existence of magnetic monopoles via the Schwinger mechanism has not yet been attempted, but it is advantageous, owing to the possibility of calculating its rate through semi-classical techniques without perturbation theory, as well as that the production of the magnetic monopoles should be enhanced by their finite size(8,9) and strong coupling to photons(2,10). Here we present a search for magnetic monopole production by the Schwinger mechanism in Pb-Pb heavy ion collisions at the Large Hadron Collider, producing the strongest known magnetic fields in the current Universe(11). It was conducted by the MoEDAL experiment, whose trapping detectors were exposed to 0.235 per nanobarn, or approximately 1.8 x 10(9), of Pb-Pb collisions with 5.02-teraelectronvolt center-of-mass energy per collision in November 2018. A superconducting quantum interference device (SQUID) magnetometer scanned the trapping detectors of MoEDAL for the presence of magnetic charge, which would induce a persistent current in the SQUID. Magnetic monopoles with integer Dirac charges of 1, 2 and 3 and masses up to 75 gigaelectronvolts per speed of light squared were excluded by the analysis at the 95% confidence level. This provides a lower mass limit for finite-size magnetic monopoles from a collider search and greatly extends previous mass bounds.  
  Address [Acharya, B.; Alexandre, J.; Ellis, J. R.; Fairbairn, M.; Mavromatos, N. E.; Sakellariadou, M.; Sarkar, S.] Kings Coll London, Phys Dept, Theoret Particle Phys & Cosmol Grp, London, England  
  Corporate Author Thesis  
  Publisher Nature Portfolio Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000750429600019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5191  
Permanent link to this record
 

 
Author Guevara, A.; Lopez Castro, G.; Roig, P. url  doi
openurl 
  Title Improved description of dilepton production in tau(-) -> nu(tau)P(- )decays Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue (down) 7 Pages 076007 - 15pp  
  Keywords  
  Abstract Recently, the Belle Collaboration reported the first measurements of the tau(-) -> nu(tau)pi(-) e(+) e(-) branching fraction and the spectrum of the pion-dielectron system. In an analysis previous to Belle's results, we evaluated this branching fraction which turned out to be compatible with that reported by Belle, although with a large uncertainty. This is the motivation to seek for improvement on our previous evaluation of tau(-) -> nu(tau)pi(-) l(+) l(-) decays (l = e, mu). In this paper we improve our calculation of the WP-gamma* vertex by including flavor-symmetry breaking effects in the framework of the resonance chiral theory. We impose QCD short-distance behavior to constrain most parameters and data on the pi(-) e(+) e(-) spectrum reported by the Belle Collaboration to fix the remaining free ones. As a result, improved predictions for the branching ratios and hadronic/leptonic spectra are reported, which are in good agreement with observations. Analogous calculations for the strangeness-changing tau(-) -> nu(tau) K- l(+) l(-) transitions are reported for the first time. Albeit one expects the m(pi mu+ mu- )spectrum to be measured in Belle-II and the observables with l = e can be improved, it is rather unlikely that the K channels can be measured due to the suppression factor vertical bar V-ud/V-us vertical bar(2) = 0.05.  
  Address [Guevara, Adolfo] Univ Granada, Dept Fis Atom Mol & Nucl, E-18071 Granada, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000789304200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5212  
Permanent link to this record
 

 
Author Alvarado, F.; Alvarez-Ruso, L. url  doi
openurl 
  Title Light-quark mass dependence of the nucleon axial charge and pion-nucleon scattering phenomenology Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue (down) 7 Pages 074001 - 13pp  
  Keywords  
  Abstract The light-quark mass dependence of the nucleon axial isovector charge (gA) has been studied up to nextto-next-to-leading order, O(p4), in relativistic chiral perturbation theory using extended-on-mass-shell renormalization, without and with explicit Delta(1232) degrees of freedom. We show that in the Delta-less case, at this order, the flat trend of gA(MN) exhibited by state-of-the-art lattice QCD (LQCD) results cannot be reproduced using low energy constants extracted from pion-nucleon elastic and inelastic scattering. A satisfactory description of these LQCD data is only achieved in the theory with Delta. From this fit, we report gA(MN(phys)) = 1.260 1 0.012, close to the experimental result, and d16 = -0.88 1 0.88 GeV-2, in agreement with its empirical value. The large uncertainties are of theoretical origin, reflecting the difference between O(p3) and O(p4) that still persists at large MN in presence of the Delta.  
  Address [Alvarado, Fernando; Alvarez-Ruso, Luis] Inst Fis Corpuscular IFIC, E-46980 Valencia, Spain, Email: Fernando.Alvarado@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000791214200001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5217  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva