toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author DUNE Collaboration (Abud, A.A. et al); Amedo, P.; Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Rocabado Rocha, J.L.; Sorel, M.; Tortola, M.; Tuzi, M.; Valle, J.W.F.; Yahlali, N. url  doi
openurl 
  Title Highly-parallelized simulation of a pixelated LArTPC on a GPU Type Journal Article
  Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 18 Issue (up) 4 Pages P04034 - 35pp  
  Keywords Detector modelling and simulations II (electric fields, charge transport, multiplication, and induction, pulse formation, electron emission, etc); Simulation methods and programs; Nobleliquid detectors (scintillation, ionization, double-phase); Time projection Chambers (TPC)  
  Abstract The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 103 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype.  
  Address [Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: roberto@lbl.gov  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000986658100009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5551  
Permanent link to this record
 

 
Author Tortola, M. doi  openurl
  Title Status of three-neutrino oscillation parameters Type Journal Article
  Year 2013 Publication Fortschritte der Physik-Progress of Physics Abbreviated Journal Fortschritte Phys.-Prog. Phys.  
  Volume 61 Issue (up) 4-5 Pages 427-440  
  Keywords Neutrino mass and mixing; neutrino oscillations; solar and atmospheric neutrinos; reactor and accelerator neutrinos  
  Abstract Here we review the current status of global fits to neutrino oscillation data within the three-flavour framework. In our analysis we include the most recent data from solar and atmospheric neutrino experiments as well as the latest results from the long-baseline accelerator neutrino experiments and the recent measurements of reactor neutrino disappearance reported by Double Chooz, Daya Bay and RENO. We present updated determinations for the two neutrino mass splittings and the three mixing angles responsible for neutrino oscillations that, for the first time, have all been measured with 1 sigma accuracies ranging from 3 to 15%. A weak sensitivity for the CP violating phase is also reported from the global analysis.  
  Address Univ Valencia, Inst Fis Corpuscular, AHEP Grp, CSIC, Valencia 46071, Spain, Email: mariam@ific.uv.es  
  Corporate Author Thesis  
  Publisher Wiley-V C H Verlag Gmbh Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0015-8208 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000317019900005 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1411  
Permanent link to this record
 

 
Author Boucenna, M.S.; Morisi, S.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Bilarge neutrino mixing and the Cabibbo angle Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 86 Issue (up) 5 Pages 051301 - 4pp  
  Keywords  
  Abstract Recent measurements of the neutrino mixing angles cast doubt on the validity of the so-far popular 2 tribimaximal mixing Ansatz. We propose a parametrization for the neutrino mixing matrix where the reactor angle seeds the large solar and atmospheric mixing angles, equal to each other in first approximation. We suggest such a bilarge mixing pattern as a model-building standard, realized when the leading order value of theta(13) equals the Cabibbo angle lambda(C).  
  Address [Boucenna, S. M.; Morisi, S.; Tortola, M.; Valle, J. W. F.] Univ Politecn Valencia, Inst Fis Corpuscular, CSIC, AHEP Grp, E-46071 Valencia, Spain, Email: boucenna@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000308690400001 Approved no  
  Is ISI yes International Collaboration  
  Call Number IFIC @ pastor @ Serial 1147  
Permanent link to this record
 

 
Author Escrihuela, F.J.; Forero, D.V.; Miranda, O.G.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title On the description of nonunitary neutrino mixing Type Journal Article
  Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 92 Issue (up) 5 Pages 053009 - 16pp  
  Keywords  
  Abstract Neutrino oscillations are well established and the relevant parameters determined with good precision, except for the CP phase, in terms of a unitary lepton mixing matrix. Seesaw extensions of the Standard Model predict unitarity deviations due to the admixture of heavy isosinglet neutrinos. We provide a complete description of the unitarity and universality deviations in the light-neutrino sector. Neutrino oscillation experiments involving electron or muon neutrinos and antineutrinos are fully described in terms of just three new real parameters and a new CP phase, in addition to the ones describing oscillations with unitary mixing. Using this formalism we describe the implications of nonunitarity for neutrino oscillations and summarize the model-independent constraints on heavy-neutrino couplings that arise from current experiments.  
  Address [Escrihuela, F. J.; Tortola, M.; Valle, J. W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, E-46980 Valencia, Spain, Email: franesfe@alumni.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000361303200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2389  
Permanent link to this record
 

 
Author Barenboim, G.; Ternes, C.A.; Tortola, M. url  doi
openurl 
  Title New physics vs new paradigms: distinguishing CPT violation from NSI Type Journal Article
  Year 2019 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 79 Issue (up) 5 Pages 390 - 7pp  
  Keywords  
  Abstract Our way of describing Nature is based on local relativistic quantum field theories, and then CPT symmetry, a natural consequence of Lorentz invariance, locality and hermiticity of the Hamiltonian, is one of the few if not the only prediction that all of them share. Therefore, testing CPT invariance does not test a particular model but the whole paradigm. Current and future long baseline experiments will assess the status of CPT in the neutrino sector at an unprecedented level and thus its distinction from similar experimental signatures arising from non-standard interactions is imperative. Whether the whole paradigm is at stake or just the standard model of neutrinos crucially depends on that.  
  Address [Barenboim, G.] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000467183800003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4005  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva