|   | 
Details
   web
Records
Author Chen, P.; Ding, G.J.; Rojas, A.D.; Vaquera-Araujo, C.A.; Valle, J.W.F.
Title Warped flavor symmetry predictions for neutrino physics Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue (down) 1 Pages 007 - 27pp
Keywords Quark Masses and SM Parameters; Neutrino Physics; Discrete and Finite Symmetries
Abstract A realistic five-dimensional warped scenario with all standard model fields propagating in the bulk is proposed. Mass hierarchies would in principle be accounted for by judicious choices of the bulk mass parameters, while fermion mixing angles are restricted by a Delta(27) flavor symmetry broken on the branes by flavon fields.The latter gives stringent predictions for the neutrino mixing parameters, and the Dirac CP violation phase, all described in terms of only two independent parameters at leading order. The scheme also gives an adequate CKM fit and should be testable within upcoming oscillation experiments.
Address [Chen, Peng; Ding, Gui-Jun] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China, Email: pche@mail.ustc.edu.cn;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000367831200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2518
Permanent link to this record
 

 
Author Escribano, P.; Hirsch, M.; Nava, J.; Vicente, A.
Title Observable flavor violation from spontaneous lepton number breaking Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue (down) 1 Pages 098 - 31pp
Keywords Beyond Standard Model; Neutrino Physics; Global Symmetries
Abstract We propose a simple model of spontaneous lepton number violation with potentially large flavor violating decays, including the possibility that majoron emitting decays, such as μ-> e J, saturate the experimental bounds. In this model the majoron is a singlet-doublet admixture. It generates a type-I seesaw for neutrino masses and contains also a vector-like lepton. As a by-product, the model can explain the anomalous (g – 2)(mu), in parts of its parameter space, where one expects that the branching ratio of the Higgs to muons is changed with respect to Standard Model expectations. However, the explanation of the muon g – 2 anomaly would lead to tension with recent astrophysical bounds on the majoron coupling to muons.
Address [Escribano, Pablo; Hirsch, Martin; Nava, Jacopo; Vicente, Avelino] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient Paterna,C Catedrcit Jose Beltrcin 2, E-46980 Valencia, Spain, Email: pablo.escribano@ifis.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000744514600003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5084
Permanent link to this record
 

 
Author Penalva, N.; Flynn, J.M.; Hernandez, E.; Nieves, J.
Title Study of new physics effects in (B)over-bars → Ds(*) τ-(ν)over-bar τ semileptonic decays using lattice QCD form factors and heavy quark effective theory Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue (down) 1 Pages 163 - 33pp
Keywords Effective Field Theories of QCD; Flavour Symmetries; Semi-Leptonic Decays; SMEFT
Abstract We benefit from the lattice QCD determination by the HPQCD of the Standard Model (SM) form factors for the (B) over bar (s) -> D-s [Phys. Rev. D101(2020) 074513] and the SM and tensor ones for the (B) over bar (s) -> D-s* (arXiv:2304.03137[hep-lat]) semileptonic decays, and the heavy quark effective theory (HQET) relations for the analogous B -> D-(*()) decays obtained by F.U. Bernlochner et al. in Phys. Rev. D95(2017) 115008, to extract the leading and sub-leading Isgur-Wise functions for the (B) over bar (s) -> D-s(()*()) decays. Further use of the HQET relations allows us to evaluate the corresponding scalar, pseudoscalar and tensor form factors needed for a phenomenological study of new physics (NP) effects on the (B) over bar (s) -> D-s(()*()) semileptonic decay. At present, the experimental values for the ratios R-D(*) = Gamma[ (B) over bar -> D-(*())(tau- (nu) over bar tau)]/Gamma[(B) over bar -> D-(*())e(-)(mu(-)) (nu) over bar (e(mu))]are the best signal in favor of lepton flavor universality violation (LFUV) seen in charged current (CC) b -> c decays. In this work we conduct a study of NP effects on the (B) over bar (s) -> D-s(()*()) tau(-)(tau) semileptonic decays by comparing tau spin, angular and spin-angular asymmetry distributions obtained within the SM and three different NP scenarios. As expected from SU(3) light-flavor symmetry, we get results close to the ones found in a similar analysis of the (B) over bar -> D-(*()) case. The measurement of the (B) over bar (s) -> D-s(()*())(l (nu) over bar tau) semileptonic decays, which is within reach of present experiments, could then be of relevance in helping to establish or rule out LFUV in CC b -> c transitions.
Address [Penalva, Neus; Nieves, Juan] Ctr Mixto CSIC UV, Inst Fis Corpuscular, Inst Invest Paterna, C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: neus.penalva@icc.ub.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001152794800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5922
Permanent link to this record
 

 
Author Hidalgo-Duque, C.; Nieves, J.; Pavon Valderrama, M.
Title Heavy quark spin symmetry and SU(3)-flavour partners of the X (3872) Type Journal Article
Year 2013 Publication Nuclear Physics A Abbreviated Journal Nucl. Phys. A
Volume 914 Issue (down) Pages 482-487
Keywords Heavy quark spin and flavour symmetries; Hidden charm molecules; XYZ states
Abstract In this work, an Effective Field Theory (EFT) incorporating light SU(3)-flavour and heavy quark spin symmetries is used to describe charmed meson-antimeson bound states. At Lowest Order (LO), this means that only contact range interactions among the heavy meson and antimeson fields are involved. Besides, the isospin violating decays of the X(3872) will be used to constrain the interaction between the D and a (D) over bar* mesons in the isovector channel. Finally, assuming that the X(3915) and Y(4140) resonances are D* (D) over bar* and D-s* (D) over bar (s)* molecular states, we can determine the four Low Energy Constants (LECs) of the EFT that appear at LO and, therefore, the full spectrum of molecular states with isospin I = 0, 1/2 and 1.
Address [Hidalgo-Duque, C.; Nieves, J.] Univ Valencia, Inst Fis Corpuscular IFIC, Inst Invest Paterna, Ctr Mixto CSIC, E-46071 Valencia, Spain, Email: carloshd@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0375-9474 ISBN Medium
Area Expedition Conference
Notes WOS:000324847700068 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1600
Permanent link to this record
 

 
Author Barenboim, G.
Title Some Aspects About Pushing the CPT and Lorentz Invariance Frontier With Neutrinos Type Journal Article
Year 2022 Publication Frontiers in Physics Abbreviated Journal Front. Physics
Volume 10 Issue (down) Pages 813753 - 7pp
Keywords CPT symmetry; neutrino properties; lorentz violation; fundamental symmetries; discrete symmetries
Abstract The CPT symmetry, which combines Charge Conjugation, Parity, and Time Reversal, is a cornerstone of our model-building method, and its probable violation will endanger the most extended tool we presently utilize to explain physics, namely local relativistic quantum fields. However, the kaon system's conservation constraints appear to be rather severe. We will show in this paper that neutrino oscillation experiments can enhance this limit by many orders of magnitude, making them an excellent instrument for investigating the basis of our understanding of Nature. As a result, verifying CPT invariance does not evaluate a specific model, but rather the entire paradigm. Therefore, as the CPT's status in the neutrino sector, linked or not to Lorentz invariance violation, will be assessed at an unprecedented level by current and future long baseline experiments, distinguishing it from comparable experimental fingerprints coming from non-standard interactions is critical. Whether the entire paradigm or simply the conventional model of neutrinos is at jeopardy is significantly dependent on this.
Address [Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, CSIC, Burjassot, Spain, Email: gabriela.barenboim@uv.es
Corporate Author Thesis
Publisher Frontiers Media Sa Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-424x ISBN Medium
Area Expedition Conference
Notes WOS:000804003600001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5237
Permanent link to this record