|   | 
Details
   web
Records
Author Gomez-Cadenas, J.J.; Martin-Albo, J.; Menendez, J.; Mezzetto, M.; Monrabal, F.; Sorel, M.
Title The search for neutrinoless double-beta decay Type Journal Article
Year 2024 Publication Rivista del Nuovo Cimento Abbreviated Journal Riv. Nuovo Cimento
Volume 46 Issue (down) Pages 619-692
Keywords Neutrinos; Majorana; Double-beta decay; Nuclear matrix elements
Abstract Neutrinos are the only particles in the Standard Model that could be Majorana fermions, that is, completely neutral fermions that are their own antiparticles. The most sensitive known experimental method to verify whether neutrinos are Majorana particles is the search for neutrinoless double-beta decay. The last 2 decades have witnessed the development of a vigorous program of neutrinoless double-beta decay experiments, spanning several isotopes and developing different strategies to handle the backgrounds masking a possible signal. In addition, remarkable progress has been made in the understanding of the nuclear matrix elements of neutrinoless double-beta decay, thus reducing a substantial part of the theoretical uncertainties affecting the particle-physics interpretation of the process. On the other hand, the negative results by several experiments, combined with the hints that the neutrino mass ordering could be normal, may imply very long lifetimes for the neutrinoless double-beta decay process. In this report, we review the main aspects of such process, the recent progress on theoretical ideas and the experimental state of the art. We then consider the experimental challenges to be addressed to increase the sensitivity to detect the process in the likely case that lifetimes are much longer than currently explored, and discuss a selection of the most promising experimental efforts.
Address [Gomez-Cadenas, Juan Jose; Monrabal, Francesc] Donostia Int Phys Ctr, ERC Basque Excellence Res Ctr, Donostia San Sebastian 20018, Spain, Email: jjgomezcadenas@dipc.org
Corporate Author Thesis
Publisher Springernature Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0393-697x ISBN Medium
Area Expedition Conference
Notes WOS:001151173800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5915
Permanent link to this record
 

 
Author Olivares Herrador, J.; Latina, A.; Aksoy, A.; Fuster Martinez, N.; Gimeno, B.; Esperante, D.
Title Implementation of the beam-loading effect in the tracking code RF-track based on a power-diffusive model Type Journal Article
Year 2024 Publication Frontiers in Physics Abbreviated Journal Front. Physics
Volume 12 Issue (down) Pages 1348042 - 11pp
Keywords beam loading; LINAC; energy loss; tracking simulation; transient; high-intensity beam; CLEAR; gradient reduction
Abstract The need to achieve high energies in particle accelerators has led to the development of new accelerator technologies, resulting in higher beam intensities and more compact devices with stronger accelerating fields. In such scenarios, beam-loading effects occur, and intensity-dependent gradient reduction affects the accelerated beam as a consequence of its interaction with the surrounding cavity. In this study, a power-diffusive partial differential equation is derived to account for this effect. Its numerical resolution has been implemented in the tracking code RF-Track, allowing the simulation of apparatuses where transient beam loading plays an important role. Finally, measurements of this effect have been carried out in the CERN Linear Electron Accelerator for Research (CLEAR) facility at CERN, finding good agreement with the RF-Track simulations.
Address [Olivares Herrador, Javier; Latina, Andrea; Aksoy, Avni] CERN, Meyrin, Switzerland, Email: javier.olivares.herrador@cern.ch
Corporate Author Thesis
Publisher Frontiers Media Sa Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-424x ISBN Medium
Area Expedition Conference
Notes WOS:001193122800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6019
Permanent link to this record