|   | 
Details
   web
Records
Author Gil-Dominguez, F.; Alarcon, J.M.; Weiss, C.
Title Proton charge radius extraction from muon scattering at MUSE using dispersively improved chiral effective field theory Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue (down) 7 Pages 074026 - 14pp
Keywords
Abstract The MUSE experiment at Paul Scherrer Institute will perform the first measurement of low-energy muon-proton elastic scattering (muon lab momenta 115-210 MeV) with the aim of determining the proton charge radius. We study the prospects for the proton radius extraction using the theoretical framework of dispersively improved chiral effective field theory (DI.EFT). It connects the proton radii with the finite-Q(2) behavior of the form factors through complex analyticity and enables the use of data up to Q(2) similar to 0.1 GeV2 for radius extraction. We quantify the sensitivity of the μp cross section to the proton charge radius, the theoretical uncertainty of the cross section predictions, and the size of two-photon exchange corrections. We find that the optimal kinematics for radius extraction at MUSE is at momenta 210 MeV and Q(2) similar to 0.05-0.08 GeV2. We compare the performance of electron and muon scattering in the same kinematics. As a by-product, we obtain explicit predictions for the μp and ep cross sections at MUSE as functions of the assumed value of the proton radius.
Address [Gil-Dominguez, F.] Inst Fis Corpuscular IFIC, Ctr Mixto CSIC UV, Inst Invest Paterna, C Catedrat Jose Beltran 2, Valencia, Spain, Email: fernando.gil@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001193674200003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6024
Permanent link to this record
 

 
Author Easa, H.; Gregoire, T.; Stolarski, D.; Cosme, C.
Title Baryogenesis and dark matter in multiple hidden sectors Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue (down) 7 Pages 075003 - 29pp
Keywords
Abstract We explore a mechanism for producing the baryon asymmetry and dark matter in models with multiple hidden sectors that are Standard -Model -like but with varying Higgs mass parameters. If the field responsible for reheating the Standard Model and the exotic sectors carries an asymmetry, it can be converted into a baryon asymmetry using the standard sphaleron process. A hidden sector with positive Higgs mass squared can accommodate dark matter with its baryon asymmetry, and the larger abundance of dark matter relative to baryons is due to dark sphalerons being active all the way down the hidden sector QCD scale. This scenario predicts that dark matter is clustered in large dark nuclei and gives a lower bound on the effective relativistic degrees of freedom, Delta N eff greater than or similar to 0 .05 , which may be observable in the nextgeneration cosmic microwave background experiment CMB-S4.
Address [Easa, Hassan; Gregoire, Thomas; Stolarski, Daniel; Cosme, Catarina] Carleton Univ, Ottawa Carleton Inst Phys, 1125 Colonel Dr, Ottawa, ON K1S 5B6, Canada, Email: Hassaneasa@cmail.carleton.ca;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001224349300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6129
Permanent link to this record
 

 
Author Esteban-Pretel, A.; Tomas, R.; Valle, J.W.F.
Title Interplay between collective effects and nonstandard interactions of supernova neutrinos Type Journal Article
Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 81 Issue (down) 6 Pages 063003 - 16pp
Keywords
Abstract We consider the effect of nonstandard neutrino interactions (NSI, for short) on the propagation of neutrinos through the supernova (SN) envelope within a three-neutrino framework and taking into account the presence of a neutrino background. We find that for given NSI parameters, with strength generically denoted by epsilon(ij), neutrino evolution exhibits a significant time dependence. For vertical bar epsilon(tau tau)vertical bar greater than or similar to 10(-3) the neutrino survival probability may become sensitive to the V-23 octant and the sign of epsilon(tau tau). In particular, if epsilon(tau tau) greater than or similar to 10(-2) an internal I-resonance may arise independently of the matter density. For typical values found in SN simulations this takes place in the same dense-neutrino region above the neutrinosphere where collective effects occur, in particular, during the synchronization regime. This resonance may lead to an exchange of the neutrino fluxes entering the bipolar regime. The main consequences are (i) bipolar conversion taking place for normal neutrino mass hierarchy and (ii) a transformation of the flux of low-energy v(e), instead of the usual spectral swap.
Address [Esteban-Pretel, A.; Valle, J. W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, E-46071 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000276195700012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 476
Permanent link to this record
 

 
Author Bernabeu, J.; Espriu, D.; Puigdomenech, D.
Title Gravitational waves in the presence of a cosmological constant Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 84 Issue (down) 6 Pages 063523 - 13pp
Keywords
Abstract We derive the effects of a nonzero cosmological constant Lambda on gravitational wave propagation in the linearized approximation of general relativity. In this approximation, we consider the situation where the metric can be written as g(mu nu) = eta(mu nu) + h(mu nu)(Lambda) + h(mu nu)(W), h(mu nu)(Lambda,W) << 1, where h(mu nu)(Lambda) is the background perturbation and h(mu nu)(W) is a modification interpretable as a gravitational wave. For Lambda not equal 0, this linearization of Einstein equations is self-consistent only in certain coordinate systems. The cosmological Friedmann-Robertson-Walker coordinates do not belong to this class and the derived linearized solutions have to be reinterpreted in a coordinate system that is homogeneous and isotropic to make contact with observations. Plane waves in the linear theory acquire modifications of order root Lambda, both in the amplitude and the phase, when considered in Friedmann-Robertson-Walker coordinates. In the linearization process for h(mu nu), we have also included terms of order O(Lambda h(mu nu)). For the background perturbation h(mu nu)(Lambda), the difference is very small, but when the term h(mu nu)(W)Lambda is retained the equations of motion can be interpreted as describing massive spin-2 particles. However, the extra degrees of freedom can be approximately gauged away, coupling to matter sources with a strength proportional to the cosmological constant itself. Finally, we discuss the viability of detecting the modifications caused by the cosmological constant on the amplitude and phase of gravitational waves. In some cases, the distortion with respect to gravitational waves propagating in Minkowski space-time is considerable. The effect of Lambda could have a detectable impact on pulsar timing arrays.
Address [Bernabeu, J] Univ Valencia, Dept Fis Teor IFIC, CSIC, E-46100 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000295223100005 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 766
Permanent link to this record
 

 
Author Coutant, A.; Fabbri, A.; Parentani, R.; Balbinot, R.; Anderson, P.R.
Title Hawking radiation of massive modes and undulations Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 86 Issue (down) 6 Pages 064022 - 17pp
Keywords
Abstract We compute the analogue Hawking radiation for modes which possess a small wave vector perpendicular to the horizon. For low frequencies, the resulting mass term induces a total reflection. This reflection is accompanied by an extra mode mixing which occurs in the supersonic region, and which cancels out the infrared divergence of the near horizon spectrum. As a result, the amplitude of the undulation (0-frequency wave with macroscopic amplitude) emitted in white hole flows now saturates at the linear level, unlike what is found in the massless case. In addition, we point out that the mass introduces a new type of undulation which is produced in black hole flows, and which is well described in the hydrodynamical regime.
Address [Coutant, Antonin; Parentani, Renaud] Univ Paris 11, Phys Theor Lab, CNRS, UMR 8627, F-91405 Orsay, France, Email: antonin.coutant@th.u-psud.fr;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000308642300005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1174
Permanent link to this record
 

 
Author Diamanti, R.; Giusarma, E.; Mena, O.; Archidiacono, M.; Melchiorri, A.
Title Dark radiation and interacting scenarios Type Journal Article
Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 87 Issue (down) 6 Pages 063509 - 8pp
Keywords
Abstract An extra dark radiation component can be present in the universe in the form of sterile neutrinos, axions or other very light degrees of freedom which may interact with the dark matter sector. We derive here the cosmological constraints on the dark radiation abundance, on its effective velocity and on its viscosity parameter from current data in dark radiation-dark matter coupled models. The cosmological bounds on the number of extra dark radiation species do not change significantly when considering interacting schemes. We also find that the constraints on the dark radiation effective velocity are degraded by an order of magnitude while the errors on the viscosity parameter are a factor of two larger when considering interacting scenarios. If future Cosmic Microwave Background data are analyzed assuming a noninteracting model but the dark radiation and the dark matter sectors interact in nature, the reconstructed values for the effective velocity and for the viscosity parameter will be shifted from their standard 1/3 expectation, namely c(eff)(2) = 0.34(-0.003)(+0.006) and c(vis)(2) = 0.29(-0.001)(+0.002) at 95% C.L. for the future COrE mission data.
Address [Diamanti, Roberta] Univ Roma Tre, Dept Phys, I-00146 Rome, Italy
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000315739200004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1349
Permanent link to this record
 

 
Author Landete, A.; Navarro-Salas, J.; Torrenti, F.
Title Adiabatic regularization for spin-1/2 fields Type Journal Article
Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 88 Issue (down) 6 Pages 061501 - 5pp
Keywords
Abstract We extend the adiabatic regularization method to spin-1/2 fields. The ansatz for the adiabatic expansion for fermionic modes differs significantly from the WKB-type template that works for scalar modes. We give explicit expressions for the first adiabatic orders and analyze particle creation in de Sitter spacetime. As for scalar fields, the adiabatic method can be distinguished by its capability to overcome the UV divergences of the particle number operator. We also test the consistency of the extended method by working out the conformal and axial anomalies for a Dirac field in a Friedmann-Lemaitre-Robertson-Walker spacetime, in exact agreement with those obtained from other renormalization prescriptions. We finally show its power by computing the renormalized stress-energy tensor for Dirac fermions in de Sitter space.
Address [Landete, Aitor] Univ Valencia, Fac Fis, Ctr Mixto Univ Valencia CSIC, Dept Fis, Burjassot 46100, Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000323894000001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1566
Permanent link to this record
 

 
Author Giusarma, E.; de Putter, R.; Ho, S.; Mena, O.
Title Constraints on neutrino masses from Planck and Galaxy clustering data Type Journal Article
Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 88 Issue (down) 6 Pages 063515 - 9pp
Keywords
Abstract We present here bounds on neutrino masses from the combination of recent Planck cosmic microwave background (CMB) measurements and galaxy clustering information from the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey-III. We use the full shape of either the photometric angular clustering (Data Release 8) or the 3D spectroscopic clustering (Data Release 9) power spectrum in different cosmological scenarios. In the Lambda CDM scenario, spectroscopic galaxy clustering measurements improve significantly the existing neutrino mass bounds from Planck data. We find Sigma m(v) < 0.39 eV at 95% confidence level for the combination of the 3D power spectrum with Planck CMB data (wi lensing included) and Wilkinson Microwave Anisoptropy Probe 9-year polarization measurements. Therefore, robust neutrino mass constraints can be obtained without the addition of the prior on the Hubble constant from Hubble Space Telescope. In extended cosmological scenarios with a dark energy fluid or with nonflat geometries, galaxy clustering measurements are essential to pin down the neutrino mass bounds, providing in the majority of cases better results than those obtained from the associated measurement of the baryon acoustic oscillation scale only. In the presence of a freely varying (constant) dark energy equation of state, we find Sigma m(v) < 0.49 eV at 95% confidence level for the combination of the 3D power spectrum with Planck CMB data (with lensing included) and Wilkinson Microwave Anisoptropy Probe 9-year polarization measurements. This same data combination in nonflat geometries provides the neutrino mass bound Sigma m(v) < 0.35 eV at 95% confidence level.
Address [Giusarma, Elena; Mena, Olga] Univ Valencia, CSIC, IFIC, Valencia 46071, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000324233900002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1592
Permanent link to this record
 

 
Author Lattanzi, M.; Riemer-Sorensen, S.; Tortola, M.; Valle, J.W.F.
Title Updated CMB and x- and gamma-ray constraints on Majoron dark matter Type Journal Article
Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 88 Issue (down) 6 Pages 063528 - 8pp
Keywords
Abstract The Majoron provides an attractive dark matter candidate, directly associated with the mechanism responsible for spontaneous neutrino mass generation within the standard model SU(3)(c) circle times SU(2)(L) circle times U(1)(Y) framework. Here we update the cosmological and astrophysical constraints on Majoron dark matter coming from the cosmic microwave background and a variety of x- and gamma-ray observations.
Address [Lattanzi, Massimiliano] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy, Email: lattanzi@fe.infn.it
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000324760500004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1595
Permanent link to this record
 

 
Author Armillis, R.; Lazarides, G.; Pallis, C.
Title Inflation, leptogenesis, and Yukawa quasiunification within a supersymmetric left-right model Type Journal Article
Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 89 Issue (down) 6 Pages 065032 - 22pp
Keywords
Abstract A simple extension of the minimal left-right symmetric supersymmetric grand unified theory model is constructed by adding two pairs of superfields. This naturally violates the partial Yukawa unification predicted by the minimal model. After including supergravity corrections, we find that this extended model naturally supports hilltop F-term hybrid inflation along its trivial inflationary path with only a very mild tuning of the initial conditions. With a convenient choice of signs of the terms in the Kahler potential, we can reconcile the inflationary scale with the supersymmetric grand unified theory scale. All the current data on the inflationary observables are readily reproduced. Inflation is followed by nonthermal leptogenesis via the decay of the right-handed neutrinos emerging from the decay of the inflaton, and any possible washout of the lepton asymmetry is avoided thanks to the violation of partial Yukawa unification. The extra superfields also assist us in reducing the reheat temperature so as to satisfy the gravitino constraint. The observed baryon asymmetry of the universe is naturally reproduced consistently with the neutrino oscillation parameters.
Address [Armillis, R.] Ecole Polytech Fed Lausanne, Inst Theorie Phenomenes Phys, CH-1015 Lausanne, Switzerland, Email: roberta.armillis@epfl.ch;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000334308100002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1760
Permanent link to this record