toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Barenboim, G.; Denton, P.B.; Oldengott, I.M. url  doi
openurl 
  Title Constraints on inflation with an extended neutrino sector Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue (down) 8 Pages 083515 - 9pp  
  Keywords  
  Abstract Constraints on inflationary models typically assume only the standard models of cosmology and particle physics. By extending the neutrino sector to include a new interaction with a light scalar mediator (m(phi) similar to MeV), it is possible to relax these constraints, in particular via opening up regions of the parameter space of the spectral index n(s). These new interactions can be probed at IceCube via interactions of astrophysical neutrinos with the cosmic neutrino background for nearly all of the relevant parameter space.  
  Address [Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000464746300005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3980  
Permanent link to this record
 

 
Author Ellis, J.; Konoplich, R.; Mavromatos, N.E.; Nguyen, L.; Sakharov, A.S.; Sarkisyan-Grinbaum, E.K. url  doi
openurl 
  Title Robust constraint on Lorentz violation using Fermi-LAT gamma-ray burst data Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue (down) 8 Pages 083009 - 22pp  
  Keywords  
  Abstract Models of quantum gravity suggest that the vacuum should be regarded as a medium with quantum structure that may have nontrivial effects on photon propagation, including the violation of Lorentz invariance. Fermi Large Area Telescope (LAT) observations of gamma-ray bursts (GRBs) are sensitive probes of Lorentz invariance, via studies of energy-dependent timing shifts in their rapidly varying photon emissions. We analyze the Fermi-LAT measurements of high-energy gamma rays from GRBs with known redshifts, allowing for the possibility of energy-dependent variations in emission times at the sources as well as a possible nontrivial refractive index in vacuo for photons. We use statistical estimators based on the irregularity, kurtosis, and skewness of bursts that are relatively bright in the 100 MeV to multi-GeV energy band to constrain possible dispersion effects during propagation. We find that the energy scale characterizing a linear energy dependence of the refractive index should exceed a few x10(17) GeV, and we estimate the sensitivity attainable with additional future sources to be detected by Fermi-LAT.  
  Address [Ellis, John; Mavromatos, Nikolaos E.] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London WC2R 2LS, England  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000464745800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3982  
Permanent link to this record
 

 
Author Beltran Jimenez, J.; Delhom, A. url  doi
openurl 
  Title Ghosts in metric-affine higher order curvature gravity Type Journal Article
  Year 2019 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 79 Issue (down) 8 Pages 656 - 7pp  
  Keywords  
  Abstract We disprove the widespread belief that higher order curvature theories of gravity in the metric-affine formalism are generally ghost-free. This is clarified by considering a sub-class of theories constructed only with the Ricci tensor and showing that the non-projectively invariant sector propagates ghost-like degrees of freedom. We also explain how these pathologies can be avoided either by imposing a projective symmetry or additional constraints in the gravity sector. Our results put forward that higher order curvature gravity theories generally remain pathological in the metric-affine (and hybrid) formalisms and highlight the key importance of the projective symmetry and/or additional constraints for their physical viability and, by extension, of general metric-affine theories.  
  Address [Beltran Jimenez, Jose] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain, Email: jose.beltran@usal.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000479306500020 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4109  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Henry, L.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanchez Mayordomo, C. url  doi
openurl 
  Title Search for the rare decay B+ -> mu(+) mu(-) mu(+)nu(mu) Type Journal Article
  Year 2019 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 79 Issue (down) 8 Pages 675 - 12pp  
  Keywords  
  Abstract A search for the rare leptonic decay B +. μ+ μ- μ+.mu is performed using proton- proton collision data corresponding to an integrated luminosity of 4.7 fb – 1 collected by the LHCb experiment. The search is carried out in the region where the lowest of the two μ+ μ- mass combinations is below 980 MeV/ c2. The data are consistent with the background- only hypothesis and an upper limit of 1.6x10 – 8 at 95% confidence level is set on the branching fraction in the stated kinematic region.  
  Address [Bediaga, I; Torres, M. Cruz; De Miranda, J. M.; dos Reis, A. C.; Gomes, A.; Massafferri, A.; Soares Lavra, L.; Tourinho Jadallah Aoude, R.] CBPF, Rio De Janeiro, Brazil, Email: slavomira.stefkova@desy.de  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000480778100002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4110  
Permanent link to this record
 

 
Author Stadler, J.; Boehm, C.; Mena, O. url  doi
openurl 
  Title Comprehensive study of neutrino-dark matter mixed damping Type Journal Article
  Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 08 Issue (down) 8 Pages 014 - 23pp  
  Keywords CMBR theory; cosmological perturbation theory; neutrino properties; power spectrum  
  Abstract Mixed damping is a physical effect that occurs when a heavy species is coupled to a relativistic fluid which is itself free streaming. As a cross-case between collisional damping and free-streaming, it is crucial in the context of neutrino-dark matter interactions. In this work, we establish the parameter space relevant for mixed damping, and we derive an analytical approximation for the evolution of dark matter perturbations in the mixed damping regime to illustrate the physical processes responsible for the suppression of cosmological perturbations. Although extended Boltzmann codes implementing neutrino-dark matter scattering terms automatically include mixed damping, this effect has not been systematically studied. In order to obtain reliable numerical results, it is mandatory to reconsider several aspects of neutrino-dark matter interactions, such as the initial conditions, the ultra-relativistic fluid approximation and high order multiple moments in the neutrino distribution. Such a precise treatment ensures the correct assessment of the relevance of mixed damping in neutrino-dark matter interactions.  
  Address [Stadler, Julia] Univ Durham, Inst Particle Phys Phenomenol, South Rd, Durham DH1 3LE, England, Email: julia.j.stadler@durham.ac.uk;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000481534700003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4111  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva