toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Perez, A.; Romanelli, A. url  doi
openurl 
  Title Spatially Dependent Decoherence and Anomalous Diffussion of Quantum Walks Type Journal Article
  Year 2013 Publication Journal of Computational and Theoretical Nanoscience Abbreviated Journal J. Comput. Theor. Nanosci.  
  Volume 10 Issue (down) 7 Pages 1591-1595  
  Keywords Decoherence; Quantum Walk; Non-Translational Invariance  
  Abstract We analyze the long time behavior of a discrete time quantum walk subject to decoherence with a strong spatial dependence, acting on one half of the lattice. We show that, except for limiting cases on the decoherence parameter, the quantum walk at late times behaves sub-ballistically, meaning that the characteristic features of the quantum walk are not completely spoiled. Contrarily to expectations, the asymptotic behavior is non Markovian, and depends on the amount of decoherence. This feature can be clearly shown on the long time value of the Generalized Chiral Distribution (GCD).  
  Address [Perez, A.] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Spain  
  Corporate Author Thesis  
  Publisher Amer Scientific Publishers Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1546-1955 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000322605800007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1528  
Permanent link to this record
 

 
Author Hinarejos, M.; Bañuls, M.C.; Perez, A. url  doi
openurl 
  Title A Study of Wigner Functions for Discrete-Time Quantum Walks Type Journal Article
  Year 2013 Publication Journal of Computational and Theoretical Nanoscience Abbreviated Journal J. Comput. Theor. Nanosci.  
  Volume 10 Issue (down) 7 Pages 1626-1633  
  Keywords Quantum Walk; Wigner Function; Negativity  
  Abstract We perform a systematic study of the discrete time Quantum Walk on one dimension using Wigner functions, which are generalized to include the chirality (or coin) degree of freedom. In particular, we analyze the evolution of the negative volume in phase space, as a function of time, for different initial states. This negativity can be used to quantify the degree of departure of the system from a classical state. We also relate this quantity to the entanglement between the coin and walker subspaces.  
  Address [Hinarejos, M.; Perez, A.] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Spain  
  Corporate Author Thesis  
  Publisher Amer Scientific Publishers Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1546-1955 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000322605800014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1529  
Permanent link to this record
 

 
Author Bozorgnia, N.; Herrero-Garcia, J.; Schwetz, T.; Zupan, J. url  doi
openurl 
  Title Halo-independent methods for inelastic dark matter scattering Type Journal Article
  Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 07 Issue (down) 7 Pages 049 - 15pp  
  Keywords dark matter theory; dark matter experiments  
  Abstract We present halo-independent methods to analyze the results of dark matter direct detection experiments assuming inelastic scattering. We focus on the annual modulation signal reported by DAMA/LIBRA and present three different halo-independent tests. First, we compare it to the upper limit on the unmodulated rate from XENON100 using (a) the trivial requirement that the amplitude of the annual modulation has to be smaller than the bound on the unmodulated rate, and (b) a bound on the annual modulation amplitude based on an expansion in the Earth's velocity. The third test uses the special predictions of the signal shape for inelastic scattering and allows for an internal consistency check of the data without referring to any astrophysics. We conclude that a strong conflict between DAMA/LIBRA and XENON100 in the framework of spin-independent inelastic scattering can be established independently of the local properties of the dark matter halo.  
  Address [Bozorgnia, Nassim; Schwetz, Thomas] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany, Email: bozorgnia@mpi-hd.mpg.de;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000322582000050 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1530  
Permanent link to this record
 

 
Author Capozziello, S.; Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J. url  doi
openurl 
  Title The virial theorem and the dark matter problem in hybrid metric-Palatini gravity Type Journal Article
  Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 07 Issue (down) 7 Pages 024 - 19pp  
  Keywords modified gravity; dark matter theory; galaxy clusters  
  Abstract Hybrid metric-Palatini gravity is a recently proposed theory, consisting of the superposition of the metric Einstein-Hilbert Lagrangian with an f(R) term constructed a la Palatini. The theory predicts the existence of a long-range scalar field, which passes the Solar System observational constraints, even if the scalar field is very light, and modifies the cosmological and galactic dynamics. Thus, the theory opens new possibilities to approach, in the same theoretical framework, the problems of both dark energy and dark matter. In this work, we consider the generalized virial theorem in the scalar-tensor representation of the hybrid metric-Palatini gravity. More specifically, taking into account the relativistic collisionless Boltzmann equation, we show that the supplementary geometric terms in the gravitational field equations provide an effective contribution to the gravitational potential energy. We show that the total virial mass is proportional to the effective mass associated with the new terms generated by the effective scalar field, and the baryonic mass. In addition to this, we also consider astrophysical applications of the model and show that the model predicts that the mass associated to the scalar field and its effects extend beyond the virial radius of the clusters of galaxies. In the context of the galaxy cluster velocity dispersion profiles predicted by the hybrid metric-Palatini model, the generalized virial theorem can be an efficient tool in observationally testing the viability of this class of generalized gravity models.  
  Address [Capozziello, Salvatore] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy, Email: capozzie@na.infn.it;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000322582000025 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1531  
Permanent link to this record
 

 
Author Lobo, F.S.N.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Semiclassical geons as solitonic black hole remnants Type Journal Article
  Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 07 Issue (down) 7 Pages 011 - 10pp  
  Keywords modified gravity; primordial black holes; Wormholes; quantum field theory on curved space  
  Abstract We find that the end state of black hole evaporation could be represented by non-singular and without event horizon stable solitonic remnants with masses of the order the Planck scale and up to similar to 16 units of charge. Though these objects are locally indistinguishable from spherically symmetric, massive electric (or magnetic) charges, they turn out to be sourceless geons containing a wormhole generated by the electromagnetic field. Our results are obtained by interpreting semiclassical corrections to Einstein's theory in the first-order (Palatini) formalism, which yields second-order equations and avoids the instabilities of the usual (metric) formulation of quadratic gravity. We also discuss the potential relevance of these solutions for primordial black holes and the dark matter problem.  
  Address [Lobo, Francisco S. N.] Univ Lisbon, Ctr Astron & Astrofis, P-1749016 Lisbon, Portugal, Email: flobo@cii.fc.ul.pt;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000322582000012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1532  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva