toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author KM3NeT Collaboration (Adrian-Martinez, S. et al); Barrios-Marti, J.; Calvo, D.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Olcina, I.; Real, D.; Sanchez Garcia, A.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Intrinsic limits on resolutions in muon- and electron-neutrino charged-current events in the KM3NeT/ORCA detector Type Journal Article
  Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue (up) 5 Pages 008 - 39pp  
  Keywords Neutrino Detectors and Telescopes (experiments)  
  Abstract Studying atmospheric neutrino oscillations in the few-GeV range with a multimegaton detector promises to determine the neutrino mass hierarchy. This is the main science goal pursued by the future KM3NeT/ORCA water Cherenkov detector in the Mediterranean Sea. In this paper, the processes that limit the obtainable resolution in both energy and direction in charged-current neutrino events in the ORCA detector are investigated. These processes include the composition of the hadronic fragmentation products, the subsequent particle propagation and the photon-sampling fraction of the detector. GEANT simulations of neutrino interactions in seawater produced by GENIE are used to study the effects in the 1-20 GeV range. It is found that fluctuations in the hadronic cascade in conjunction with the variation of the inelasticity y are most detrimental to the resolutions. The effect of limited photon sampling in the detector is of significantly less importance. These results will therefore also be applicable to similar detectors/media, such as those in ice.  
  Address [Morganti, M.] Accademia Navale Livorno, Viale Italia 72, Livorno, Italy, Email: jannik.hofestaedt@fau.de;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000401072300004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3130  
Permanent link to this record
 

 
Author Garani, R.; Palomares-Ruiz, S. url  doi
openurl 
  Title Dark matter in the Sun: scattering off electrons vs nucleons Type Journal Article
  Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 05 Issue (up) 5 Pages 007 - 41pp  
  Keywords dark matter detectors; dark matter theory; neutrino detectors; stars  
  Abstract The annihilation of dark matter (DM) particles accumulated in the Sun could produce a flux of neutrinos, which is potentially detectable with neutrino detectors/telescopes and the DM elastic scattering cross section can be constrained. Although the process of DM capture in astrophysical objects like the Sun is commonly assumed to be due to interactions only with nucleons, there are scenarios in which tree-level DM couplings to quarks are absent, and even if loop-induced interactions with nucleons are allowed, scatterings off electrons could be the dominant capture mechanism. We consider this possibility and study in detail all the ingredients necessary to compute the neutrino production rates from DM annihilationsin the Sun (capture, annihilation and evaporation rates) for velocity-independent and isotropic, velocity-dependent and isotropic and momentum-dependent scattering cross sections for DM interactions with electrons and compare them with the results obtained for the case of interactions with nucleons. Moreover, we improve the usual calculations in a number of ways and provide analytical expressions in three appendices. Interestingly, we find that the evaporation mass in the case of interactions with electrons could be below the GeV range, depending on the high-velocity tail of the DM distribution in the Sun, which would open a new mass window for searching for this type of scenarios.  
  Address [Garani, Raghuveer] Univ Bonn, Bethe Ctr Theoret Phys, Nussallee 12, D-53115 Bonn, Germany, Email: garani@th.physik.uni-bonn.de;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000402878200007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3175  
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Barrios-Marti, J.; Coleiro, A.; Colomer, M.; Gozzini, R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Lotze, M.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Measuring the atmospheric neutrino oscillation parameters and constraining the 3+1 neutrino model with ten years of ANTARES data Type Journal Article
  Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue (up) 6 Pages 113 - 23pp  
  Keywords Neutrino Detectors and Telescopes (experiments); Oscillation  
  Abstract The ANTARES neutrino telescope has an energy threshold of a few tens of GeV. This allows to study the phenomenon of atmospheric muon neutrino disappearance due to neutrino oscillations. In a similar way, constraints on the 3+1 neutrino model, which foresees the existence of one sterile neutrino, can be inferred. Using data collected by the ANTARES neutrino telescope from 2007 to 2016, a new measurement of m 2 and (23) has been performed which is consistent with world best-fit values and constraints on the 3+1 neutrino model have been derived.  
  Address [Drouhin, D.; Ruiz, R. Gracia; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Email: salvadori@cppm.in2p3.fr  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000472922700002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4066  
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Alves, S.; Calvo, D.; Carretero, V.; Gozzini, R.; Hernandez-Rey, J.J.; Khan-Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Real, D.; Sanchez-Losa, A.; Salesa Greus, F.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Search for solar atmospheric neutrinos with the ANTARES neutrino telescope Type Journal Article
  Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 06 Issue (up) 6 Pages 018 - 17pp  
  Keywords neutrino detectors; neutrino experiments; solar and atmospheric neutrinos; dark matter experiments  
  Abstract Solar Atmospheric Neutrinos (SA nu s) are produced by the interaction of cosmic rays with the solar medium. The detection of SA nu s would provide useful information on the composition of primary cosmic rays as well as the solar density. These neutrinos represent an irreducible source of background for indirect searches for dark matter towards the Sun and the measurement of their flux would allow for a better assessment of the uncertainties related to these searches. In this paper we report on the analysis performed, based on an unbinned likelihood maximisation, to search for SA nu s with the ANTARES neutrino telescope. After analysing the data collected over 11 years, no evidence for a solar atmospheric neutrino signal has been found. An upper limit at 90% confidence level on the flux of solar atmospheric neutrinos has been obtained, equal to 7x10(-11) [TeV-1 cm(-2) s(-1)] b at E-nu = 1 TeV for the reference cosmic ray model assumed.  
  Address [Albert, A.; Drouhin, D.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000833413700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5319  
Permanent link to this record
 

 
Author Bhattacharya, A.; Esmaili, A.; Palomares-Ruiz, S.; Sarcevic, I. url  doi
openurl 
  Title Probing decaying heavy dark matter with the 4-year IceCube HESE data Type Journal Article
  Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 07 Issue (up) 7 Pages 027 - 36pp  
  Keywords dark matter theory; neutrino astronomy; neutrino detectors; ultra high energy photons and neutrinos  
  Abstract After the first four years of data taking, the IceCube neutrino telescope has observed 54 high-energy starting events (HESE) with deposited energies between 20TeV and 2PeV. The background from atmospheric muons and neutrinos is expected to be of about 20 events, all below 100TeV, thus pointing towards the astrophysical origin of about 8 events per year in that data set. However, their precise origin remains unknown. Here, we perform a detailed analysis of this event sample (considering simultaneously the energy, hemisphere and topology of the events) by assuming two contributions for the signal events: an isotropic power-law flux and a flux from decaying heavy dark matter. We fit the mass and lifetime of the dark matter and the normalization and spectral index of an isotropic power-law flux, for various decay channels of dark matter. We find that a significant contribution from dark matter decay is always slightly favored, either to explain the excess below 100TeV, as in the case of decays to quarks or, as in the case of neutrino channels, to explain the three multi-PeV events. Also, we consider the possibility to interpret all the data by dark matter decays only, considering various combinations of two decay channels. We show that the decaying dark matter scenario provides a better fit to HESE data than the isotropic power-law flux.  
  Address [Bhattacharya, Atri] Univ Liege, Space Sci Technol & Astrophys Res STAR Inst, Bat B5a, B-4000 Liege, Belgium, Email: a.bhattacharya@ulg.ac.be;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000406420500009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3243  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva