toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Babichev, E.; Fabbri, A. url  doi
openurl 
  Title A class of charged black hole solutions in massive (bi)gravity Type Journal Article
  Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue (up) 7 Pages 016 - 10pp  
  Keywords Classical Theories of Gravity; Black Holes  
  Abstract We present a new class of solutions describing charged black holes in massive (bi)gravity. For a generic choice of the parameters of the massive gravity action, the solution is the Reissner-Nordstrom-de Sitter metric written in the Eddington-Finkelstein coordinates for both metrics. We also study a special case of the parameters, for which the space of solutions contains an extra symmetry.  
  Address [Babichev, Eugeny] Univ Paris 11, CNRS, LPT, UMR 8627, F-91405 Orsay, France, Email: eugeny.babichev@th.u-psud.fr;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000339110500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1847  
Permanent link to this record
 

 
Author Guerrero, M.; Mora-Perez, G.; Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D. url  doi
openurl 
  Title Rotating black holes in Eddington-inspired Born-Infeld gravity: an exact solution Type Journal Article
  Year 2020 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 07 Issue (up) 7 Pages 058 - 31pp  
  Keywords modified gravity; GR black holes; Wormholes  
  Abstract We find an exact, rotating charged black hole solution within Eddington-inspired Born-Infeld gravity. To this end we employ a recently developed correspondence or mapping between modified gravity models built as scalars out of contractions of the metric with the Ricci tensor, and formulated in metric-affine spaces (Ricci-Based Gravity theories) and General Relativity. This way, starting from the Kerr-Newman solution, we show that this mapping bring us the axisymmetric solutions of Eddington-inspired Born-Infeld gravity coupled to a certain model of non-linear electrodynamics. We discuss the most relevant physical features of the solutions obtained this way, both in the spherically symmetric limit and in the fully rotating regime. Moreover, we further elaborate on the potential impact of this important technical progress for bringing closer the predictions of modified gravity with the astrophysical observations of compact objects and gravitational wave astronomy.  
  Address [Guerrero, Merce; Rubiera-Garcia, Diego] Univ Complutense Madrid, Dept Fis Teor, E-28040 Madrid, Spain, Email: merguerr@ucm.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000609085900005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4682  
Permanent link to this record
 

 
Author Agius, D.; Essig, R.; Gaggero, D.; Scarcella, F.; Suczewski, G.; Valli, M. url  doi
openurl 
  Title Feedback in the dark: a critical examination of CMB bounds on primordial black holes Type Journal Article
  Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 07 Issue (up) 7 Pages 003 - 36pp  
  Keywords accretion; cosmological parameters from CMBR; dark matter theory; primordial black holes  
  Abstract If present in the early universe, primordial black holes (PBHs) would have accreted matter and emitted high-energy photons, altering the statistical properties of the Cosmic Microwave Background (CMB). This mechanism has been used to constrain the fraction of dark matter that is in the form of PBHs to be much smaller than unity for PBH masses well above one solar mass. Moreover, the presence of dense dark matter mini -halos around the PBHs has been used to set even more stringent constraints, as these would boost the accretion rates. In this work, we critically revisit CMB constraints on PBHs taking into account the role of the local ionization of the gas around them. We discuss how the local increase in temperature around PBHs can prevent the dark matter mini -halos from strongly enhancing the accretion process, in some cases significantly weakening previously derived CMB constraints. We explore in detail the key ingredients of the CMB bound and derive a conservative limit on the cosmological abundance of massive PBHs.  
  Address [Agius, Dominic] Univ Valencia, CSIC, Inst Fis Corpuscular, C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: dominic.agius@ific.uv.es;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001262242300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6187  
Permanent link to this record
 

 
Author Creminelli, P.; Loayza, N.; Serra, F.; Trincherini, E.; Trombetta, L.G. url  doi
openurl 
  Title Hairy black-holes in shift-symmetric theories Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue (up) 8 Pages 045 - 24pp  
  Keywords Black Holes; Classical Theories of Gravity  
  Abstract Scalar hair of black holes in theories with a shift symmetry are constrained by the no-hair theorem of Hui and Nicolis, assuming spherical symmetry, time-independence of the scalar field and asymptotic flatness. The most studied counterexample is a linear coupling of the scalar with the Gauss-Bonnet invariant. However, in this case the norm of the shift-symmetry current J(2) diverges at the horizon casting doubts on whether the solution is physically sound. We show that this is not an issue since J(2) is not a scalar quantity, since J(mu) is not a diffinvariant current in the presence of Gauss-Bonnet. The same theory can be written in Horndeski form with a non-analytic function G(5)similar to log X . In this case the shift-symmetry current is diff-invariant, but contains powers of X in the denominator, so that its divergence at the horizon is again immaterial. We confirm that other hairy solutions in the presence of non-analytic Horndeski functions are pathological, featuring divergences of physical quantities as soon as one departs from time-independence and spherical symmetry. We generalise the no-hair theorem to Beyond Horndeski and DHOST theories, showing that the coupling with Gauss-Bonnet is necessary to have hair.  
  Address [Creminelli, Paolo] Abdus Salaam Int Ctr Theoret Phys, Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy, Email: creminel@ictp.it;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000562728200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4515  
Permanent link to this record
 

 
Author Guerrero, M.; Olmo, G.J.; Rubiera-Garcia, D.; Saez-Chillon Gomez, D. url  doi
openurl 
  Title Shadows and optical appearance of black bounces illuminated by a thin accretion disk Type Journal Article
  Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 08 Issue (up) 8 Pages 036 - 19pp  
  Keywords GR black holes; Wormholes; modified gravity; accretion  
  Abstract We study the light rings and shadows of an uniparametric family of spherically symmetric geometries interpolating between the Schwarzschild solution, a regular black hole, and a traversable wormhole, and dubbed as black bounces, all of them sharing the same critical impact parameter. We consider the ray-tracing method in order to study the impact parameter regions corresponding to the direct, lensed, and photon ring emissions, finding a broadening of all these regions for black bounce solutions as compared to the Schwarzschild one. Using this, we determine the optical appearance of black bounces when illuminated by three standard toy models of optically and geometrically thin accretion disks viewed in face-on orientation.  
  Address [Guerrero, Merce; Rubiera-Garcia, Diego] Univ Complutense Madrid, Dept Fis Teor, E-28040 Madrid, Spain, Email: merguerr@ucm.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000686656000022 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4943  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva