toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author LHCb Collaboration (Aaij, R. et al); Henry, L.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J. url  doi
openurl 
  Title Study of coherent J/psi production in lead-lead collisions at root S-NN=5 TeV Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue (down) 7 Pages 117 - 19pp  
  Keywords Heavy Ion Experiments; Particle and Resonance Production; QCD; Quarkonium; Relativistic Heavy Ion Physics  
  Abstract Coherent production of J/psi mesons is studied in ultraperipheral lead-lead collisions at a nucleon-nucleon centre-of-mass energy of 5 TeV, using a data sample collected by the LHCb experiment corresponding to an integrated luminosity of about 10 μb(-1). The J/psi mesons are reconstructed in the dimuon final state and are required to have transverse momentum below 1 GeV. The cross-section within the rapidity range of 2.0 < y < 4.5 is measured to be 4.45 +/- 0.24 +/- 0.18 +/- 0.58 mb, where the first uncertainty is statistical, the second systematic and the third originates from the luminosity determination. The cross-section is also measured in J/psi rapidity intervals. The results are compared to predictions from phenomenological models.  
  Address [Leite, J. Baptista; Bediaga, I; Torres, M. Cruz; De Miranda, J. M.; dos Reis, A. C.; Gomes, A.; Massafferri, A.; Machado, D. Torres] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil, Email: albert.frithjof.bursche@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000829159300002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5309  
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Garcia Soto, A.; Gozzini, S.R.; Hernandez-Rey, J.J.; Khan Chowdhury, N.R.; Lazo, A.; Manczak, J.; Palacios Gonzalez, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Sanchez Losa, A.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title The KM3NeT multi-PMT optical module Type Journal Article
  Year 2022 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 17 Issue (down) 7 Pages P07038 - 28pp  
  Keywords Cherenkov detectors; Large detector systems for particle and astroparticle physics; Neutrino detectors  
  Abstract The optical module of the KM3NeT neutrino telescope is an innovative multi-faceted large area photodetection module. It contains 31 three-inch photomultiplier tubes in a single 0.44 m diameter pressure-resistant glass sphere. The module is a sensory device also comprising calibration instruments and electronics for power, readout and data acquisition. It is capped with a breakout-box with electronics for connection to an electro-optical cable for power and long-distance communication to the onshore control station. The design of the module was qualified for the first time in the deep sea in 2013. Since then, the technology has been further improved to meet requirements of scalability, cost-effectiveness and high reliability. The module features a sub-nanosecond timing accuracy and a dynamic range allowing the measurement of a single photon up to a cascade of thousands of photons, suited for the measurement of the Cherenkov radiation induced in water by secondary particles from interactions of neutrinos with energies in the range of GeV to PeV. A distributed production model has been implemented for the delivery of more than 6000 modules in the coming few years with an average production rate of more than 100 modules per month. In this paper a review is presented of the design of the multi-PMT KM3NeT optical module with a proven effective background suppression and signal recognition and sensitivity to the incoming direction of photons.  
  Address [Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Italy, Italy, Email: km3net-pc@km3net.de  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000898568200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5449  
Permanent link to this record
 

 
Author Fadel, M.; Yadin, B.; Mao, Y.P.; Byrnes, T.; Gessner, M. url  doi
openurl 
  Title Multiparameter quantum metrology and mode entanglement with spatially split nonclassical spin ensembles Type Journal Article
  Year 2023 Publication New Journal of Physics Abbreviated Journal New J. Phys.  
  Volume 25 Issue (down) 7 Pages 073006 - 25pp  
  Keywords quantum metrology; Bose-Einstein condensates; spin-squeezing; Fisher information matrix; mode and particle entanglement  
  Abstract We identify the multiparameter sensitivity of entangled spin states, such as spin-squeezed and Dicke states that are spatially distributed into several addressable spatial modes. Analytical expressions for the spin-squeezing matrix of families of states that are accessible by current atomic experiments reveal the quantum gain in multiparameter metrology, as well as the optimal strategies to maximize the sensitivity gain for the estimation of any linear combination of parameters. We further study the mode entanglement of these states by deriving a witness for genuine k-partite mode entanglement from the spin-squeezing matrix. Our results highlight the advantage of mode entanglement for distributed sensing, and outline optimal protocols for multiparameter estimation with nonclassical spatially-distributed spin ensembles. We illustrate our findings with the design of a protocol for gradient sensing with a Bose-Einstein condensate in an entangled spin state in two modes.  
  Address [Fadel, Matteo] Swiss Fed Inst Technol, Dept Phys, CH-8093 Zurich, Switzerland, Email: fadelm@phys.ethz.ch;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001026518600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5582  
Permanent link to this record
 

 
Author Fischer, O.; Pattnaik, B.; Zurita, J. url  doi
openurl 
  Title Testing Heavy Neutral Leptons in Cosmic Ray Beam Dump experiments Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue (down) 7 Pages 193 - 24pp  
  Keywords Cosmic Rays; Sterile or Heavy Neutrinos; New Light Particles  
  Abstract In this work, we discuss the possibility to test Heavy Neutral Leptons (HNLs) using “Cosmic Ray Beam Dump” experiments. In analogy with terrestrial beam dump experiments, where a beam first hits a target and is then absorbed by a shield, we consider high-energy incident cosmic rays impinging on the Earth's atmosphere and then the Earth's surface. We focus here on HNL production from atmospherically produced kaon, pion and D-meson decays, and discuss the possible explanation of the appearing Cherenkov showers observed by the SHALON Cherenkov telescope and the ultra-high energy events detected by the neutrino experiment ANITA. We show that these observations can not be explained with a long-lived HNL, as the relevant parameter space is excluded by existing constraints. Then we propose two new experimental setups that are inspired by these experiments, namely a Cherenkov telescope pointing at a sub-horizontal angle and shielded by the mountain cliff at Mount Thor, and a geostationary satellite that observes part of the Sahara desert. We show that the Cherenkov telescope at Mount Thor can probe currently untested HNL parameter space for masses below the kaon mass. We also show that the geostationary satellite experiment can significantly increase the HNL parameter space coverage in the whole mass range from 10 MeV up to 2 GeV and test neutrino mixing |U-& alpha;4|(2) down to 10(-11) for masses around 300 MeV.  
  Address [Fischer, Oliver] Univ Liverpool, Dept Math Sci, Liverpool L69 3BX, England, Email: Oliver.Fischer@liverpool.ac.uk;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001037689200008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5615  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Amos, K.R.; Aparisi Pozo, J.A.; Bailey, A.J.; Bouchhar, N.; Cabrera Urban, S.; Cantero, J.; Cardillo, F.; Castillo Gimenez, V.; Chitishvili, M.; Costa, M.J.; Didenko,, M.; Escobar, C.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gomez Delegido, A.J.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Lacasta, C.; Lozano Bahilo, J.J.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Monsonis Romero, L.; Moreno Llacer, M.; Munoz Perez, D.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Rubio Jimenez, A.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Sanchez Sebastian, V.; Sayago Galvan, I.; Senthilkumar, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valiente Moreno, E.; Valls Ferrer, J.A.; Varriale, L.; Villaplana Perez, M.; Vos, M. url  doi
openurl 
  Title Search for new phenomena in multi-body invariant masses in events with at least one isolated lepton and two jets using √s=13 TeV proton-proton collision data collected by the ATLAS detector Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue (down) 7 Pages 202 - 44pp  
  Keywords Hadron-Hadron Scattering; Particle and Resonance Production  
  Abstract A search for resonances in events with at least one isolated lepton (e or mu) and two jets is performed using 139 fb(-1) of root s = 13 TeV proton-proton collision data recorded by the ATLAS detector at the LHC. Deviations from a smoothly falling background hypothesis are tested in three- and four-body invariant mass distributions constructed from leptons and jets, including jets identified as originating from bottom quarks. Model-independent limits on generic resonances characterised by cascade decays of particles leading to multiple jets and leptons in the final state are presented. The limits are calculated using Gaussian shapes with different widths for the invariant masses. The multi-body invariant masses are also used to set 95% confidence level upper limits on the cross-section times branching ratios for the production and subsequent decay of resonances predicted by several new physics scenarios.  
  Address [Amerl, M.; Filmer, E. K.; Jackson, P.; Kong, A. X. Y.; Potti, H.; Ruggeri, T. A.; Ting, E. X. L.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001062358800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5727  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva