toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author FCC Collaboration (Abada, A. et al); Aguilera-Verdugo, J.J.; Hernandez, P.; Ramirez-Uribe, N.S.; Renteria-Olivo, A.E.; Rodrigo, G.; Sborlini, G.F.R.; Valle, J.W.F. doi  openurl
  Title FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3 Type Journal Article
  Year 2019 Publication European Physical Journal-Special Topics Abbreviated Journal Eur. Phys. J.-Spec. Top.  
  Volume 228 Issue (up) 4 Pages 755-1107  
  Keywords  
  Abstract In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100TeV. Its unprecedented centre of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries.  
  Address [Apyan, A.] AI Alikhanyan Natl Sci Lab YerPhi, Yerevan, Armenia, Email: Michael.Benedikt@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Heidelberg Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1951-6355 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000477858500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4082  
Permanent link to this record
 

 
Author Ramirez-Uribe, S.; Hernandez-Pinto, R.J.; Rodrigo, G.; Sborlini, G.F.R.; Torres Bobadilla, W.J. url  doi
openurl 
  Title Universal opening of four-loop scattering amplitudes to trees Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue (up) 4 Pages 129 - 22pp  
  Keywords Duality in Gauge Field Theories; Perturbative QCD; Scattering Amplitudes  
  Abstract The perturbative approach to quantum field theories has made it possible to obtain incredibly accurate theoretical predictions in high-energy physics. Although various techniques have been developed to boost the efficiency of these calculations, some ingredients remain specially challenging. This is the case of multiloop scattering amplitudes that constitute a hard bottleneck to solve. In this paper, we delve into the application of a disruptive technique based on the loop-tree duality theorem, which is aimed at an efficient computation of such objects by opening the loops to nondisjoint trees. We study the multiloop topologies that first appear at four loops and assemble them in a clever and general expression, the (NMLT)-M-4 universal topology. This general expression enables to open any scattering amplitude of up to four loops, and also describes a subset of higher order configurations to all orders. These results confirm the conjecture of a factorized opening in terms of simpler known subtopologies, which also determines how the causal structure of the entire loop amplitude is characterized by the causal structure of its subtopologies. In addition, we confirm that the loop-tree duality representation of the (NMLT)-M-4 universal topology is manifestly free of noncausal thresholds, thus pointing towards a remarkably more stable numerical implementation of multiloop scattering amplitudes.  
  Address [Ramirez-Uribe, Selomit; Rodrigo, German; Sborlini, German F. R.; Bobadilla, William J. Torres] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient, E-46980 Valencia, Spain, Email: norma.selomit.ramirez@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000641467800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4787  
Permanent link to this record
 

 
Author Plenter, J.; Rodrigo, G. url  doi
openurl 
  Title Asymptotic expansions through the loop-tree duality Type Journal Article
  Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 81 Issue (up) 4 Pages 320 - 13pp  
  Keywords  
  Abstract Asymptotic expansions of Feynman amplitudes in the loop-tree duality formalism are implemented at integrand-level in the Euclidean space of the loop three-momentum, where the hierarchies among internal and external scales are well-defined. The ultraviolet behaviour of the individual contributions to the asymptotic expansion emerges only in the first terms of the expansion and is renormalized locally in four space-time dimensions. These two properties represent an advantage over the method of Expansion by Regions. We explore different approaches in different kinematical limits, and derive explicit asymptotic expressions for several benchmark configurations.  
  Address [Plenter, Judith; Rodrigo, German] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient, Valencia 46980, Spain, Email: plenter@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000641475900003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4810  
Permanent link to this record
 

 
Author de Florian, D.; Sborlini, G.F.R.; Rodrigo, G. url  doi
openurl 
  Title QED corrections to the Altarelli-Parisi splitting functions Type Journal Article
  Year 2016 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 76 Issue (up) 5 Pages 282 - 6pp  
  Keywords  
  Abstract We discuss the combined effect of QED and QCD corrections to the evolution of parton distributions. We extend the available knowledge of the Altarelli-Parisi splitting functions to one order higher in QED, and we provide explicit expressions for the splitting kernels up to O(alpha alpha(S)). The results presented in this article allow one to perform a parton distribution function analysis reaching full NLO QCD-QED combined precision.  
  Address [de Florian, Daniel] Univ Buenos Aires, FCEyN, Dept Fis, 1428 Pabellon 1 Ciudad Univ, Buenos Aires, Argentina, Email: deflo@unsam.edu.ar;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000376606500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2692  
Permanent link to this record
 

 
Author Buchta, S.; Chachamis, G.; Draggiotis, P.; Rodrigo, G. url  doi
openurl 
  Title Numerical implementation of the loop-tree duality method Type Journal Article
  Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 77 Issue (up) 5 Pages 274 - 15pp  
  Keywords  
  Abstract We present a first numerical implementation of the loop-tree duality (LTD) method for the direct numerical computation of multi-leg one-loop Feynman integrals. We discuss in detail the singular structure of the dual integrands and define a suitable contour deformation in the loop three-momentum space to carry out the numerical integration. Then we apply the LTD method to the computation of ultraviolet and infrared finite integrals, and we present explicit results for scalar and tensor integrals with up to eight external legs (octagons). The LTD method features an excellent performance independently of the number of external legs.  
  Address [Buchta, Sebastian; Rodrigo, German] Univ Valencia, Consejo Super Invest Cient, Inst Fis Corpuscular, Parc Cient, Valencia 46980, Spain, Email: sbuchta@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000400642800002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3115  
Permanent link to this record
 

 
Author FCC Collaboration (Abada, A. et al); Aguilera-Verdugo, J.J.; Hernandez, P.; Ramirez-Uribe, N.S.; Renteria-Olivo, A.E.; Rodrigo, G.; Sborlini, G.F.R.; Valle, J.W.F. doi  openurl
  Title HE-LHC: The High-Energy Large Hadron Collider Future Circular Collider Conceptual Design Report Volume 4 Type Journal Article
  Year 2019 Publication European Physical Journal-Special Topics Abbreviated Journal Eur. Phys. J.-Spec. Top.  
  Volume 228 Issue (up) 5 Pages 1109-1382  
  Keywords  
  Abstract In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries.  
  Address [Apyan, A.] AI Alikhanyan Natl Sci Lab YerPhi, Yerevan, Armenia, Email: frank.zimmermann@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Heidelberg Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1951-6355 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000476546300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4089  
Permanent link to this record
 

 
Author Ramirez-Uribe, S.; Renteria-Olivo, A.E.; Rodrigo, G.; Sborlini, G.F.R.; Vale Silva, L. url  doi
openurl 
  Title Quantum algorithm for Feynman loop integrals Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue (up) 5 Pages 100 - 32pp  
  Keywords Duality in Gauge Field Theories; Perturbative QCD; Scattering Amplitudes  
  Abstract We present a novel benchmark application of a quantum algorithm to Feynman loop integrals. The two on-shell states of a Feynman propagator are identified with the two states of a qubit and a quantum algorithm is used to unfold the causal singular configurations of multiloop Feynman diagrams. To identify such configurations, we exploit Grover's algorithm for querying multiple solutions over unstructured datasets, which presents a quadratic speed-up over classical algorithms when the number of solutions is much smaller than the number of possible configurations. A suitable modification is introduced to deal with topologies in which the number of causal states to be identified is nearly half of the total number of states. The output of the quantum algorithm in IBM Quantum and QUTE Testbed simulators is used to bootstrap the causal representation in the loop-tree duality of representative multiloop topologies. The algorithm may also find application and interest in graph theory to solve problems involving directed acyclic graphs.  
  Address [Ramirez-Uribe, Selomit; Renteria-Olivo, Andres E.; Rodrigo, German; Sborlini, German F. R.; Vale Silva, Luiz] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient, E-46980 Valencia, Spain, Email: norma.selomit.ramirez@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000796990400007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5230  
Permanent link to this record
 

 
Author FCC Collaboration (Abada, A. et al); Aguilera-Verdugo, J.J.; Hernandez, P.; Ramirez-Uribe, N.S.; Renteria-Olivo, A.E.; Rodrigo, G.; Sborlini, G.F.R.; Valle, J.W.F. doi  openurl
  Title FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1 Type Journal Article
  Year 2019 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 79 Issue (up) 6 Pages 474 - 161pp  
  Keywords  
  Abstract We review the physics opportunities of the Future Circular Collider, covering its e(+)e(-), pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics.  
  Address [Apyan, Arm.] A Alikhanyan Natl Sci Lab YerPhi, Yerevan, Armenia  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000470335500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4049  
Permanent link to this record
 

 
Author Aguilera-Verdugo, J.D.; Driencourt-Mangin, F.; Hernandez-Pinto, R.J.; Plenter, J.; Prisco, R.M.; Ramirez-Uribe, N.S.; Renteria-Olivo, A.E.; Rodrigo, G.; Sborlini, G.F.R.; Torres Bobadilla, W.J.; Tramontano, F. url  doi
openurl 
  Title A Stroll through the Loop-Tree Duality Type Journal Article
  Year 2021 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 13 Issue (up) 6 Pages 1029 - 37pp  
  Keywords Feynman integrals; multi-loop calculations; perturbative QFT; higher orders  
  Abstract The Loop-Tree Duality (LTD) theorem is an innovative technique to deal with multi-loop scattering amplitudes, leading to integrand-level representations over a Euclidean space. In this article, we review the last developments concerning this framework, focusing on the manifestly causal representation of multi-loop Feynman integrals and scattering amplitudes, and the definition of dual local counter-terms to cancel infrared singularities.  
  Address [de Jesus Aguilera-Verdugo, Jose; Driencourt-Mangin, Felix; Plenter, Judith; Selomit Ramirez-Uribe, Norma; Ernesto Renteria-Olivo, Andres; Rodrigo, German; Sborlini, German] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient, E-46980 Paterna, Spain, Email: jesus.aguilera@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000666742200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4889  
Permanent link to this record
 

 
Author Catani, S.; de Florian, D.; Rodrigo, G. url  doi
openurl 
  Title Space-like (vs. time-like) collinear limits in QCD: is factorization violated? Type Journal Article
  Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue (up) 7 Pages 026 - 88pp  
  Keywords NLO Computations; Hadronic Colliders  
  Abstract We consider the singular behaviour of QCD scattering amplitudes in kinematical configurations where two or more momenta of the external partons become collinear. At the tree level, this behaviour is known to be controlled by factorization formulae in which the singular collinear factor is universal (process independent). We show that this strict (process-independent) factorization is not valid at one-loop and higher-loop orders in the case of the collinear limit in space-like regions (e. g., collinear radiation from initial-state partons). We introduce a generalized version of all-order collinear factorization, in which the space-like singular factors retain some dependence on the momentum and colour charge of the non-collinear partons. We present explicit results on one-loop and two-loop amplitudes for both the two-parton and multiparton collinear limits. At the level of squared amplitudes and, more generally, cross sections in hadron-hadron collisions, the violation of strict collinear factorization has implications on the non-abelian structure of logarithmically-enhanced terms in perturbative calculations (starting from the next-to-next-to-leading order) and on various factorization issues of mass singularities (starting from the next-to-next-to-next-to-leading order).  
  Address [Catani, Stefano] Univ Florence, Sez Firenze, Ist Nazl Fis Nucl, I-50019 Florence, Italy, Email: catani@fi.infn.it;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000307298400026 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1160  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva