|   | 
Details
   web
Records
Author Maso-Ferrando, A.; Sanchis-Gual, N.; Font, J.A.; Olmo, G.J.
Title Birth of baby universes from gravitational collapse in a modified-gravity scenario Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue (up) 6 Pages 028 - 19pp
Keywords modified gravity; Wormholes
Abstract We consider equilibrium models of spherical boson stars in Palatini f (R) = R + CR2 gravity and study their collapse when perturbed. The Einstein-Klein-Gordon system is solved using a recently established correspondence in an Einstein frame representation. We find that, in that frame, the endpoint is a nonrotating black hole surrounded by a quasi -stationary cloud of scalar field. However, the dynamics in the f (R) frame is dramatically different. The innermost region of the collapsing object exhibits the formation of a finite -size, exponentially-expanding baby universe connected with the outer (parent) universe via a minimal area surface (a throat or umbilical cord). Our simulations indicate that this surface is at all times hidden inside a horizon, causally disconnecting the baby universe from observers above the horizon. The implications of our findings in other areas of gravitational physics are also discussed.
Address [Maso-Ferrando, Andreu; Olmo, Gonzalo J.] Univ Valencia, Ctr Mixto, CSIC, Dept Fis Teor, Valencia 46100, Spain, Email: andreu.maso@uv.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001025474200010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5577
Permanent link to this record
 

 
Author Delhom, A.; Olmo, G.J.; Singh, P.
Title A diffeomorphism invariant family of metric-affine actions for loop cosmologies Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue (up) 6 Pages 059 - 21pp
Keywords quantum cosmology; modified gravity; cosmic singularity
Abstract In loop quantum cosmology (LQC) the big bang singularity is generically resolved by a big bounce. This feature holds even when modified quantization prescriptions of the Hamiltonian constraint are used such as in mLQC-I and mLQC-II. While the later describes an effective description qualitatively similar to that of standard LQC, the former describes an asymmetric evolution with an emergent Planckian de-Sitter pre-bounce phase even in the absence of a potential. We consider the potential relation of these canonically quantized non-singular models with effective actions based on a geometric description. We find a 3-parameter family of metric-affine f (R) theories which accurately approximate the effective dynamics of LQC and mLQC-II in all regimes and mLQC-I in the post-bounce phase. Two of the parameters are fixed by enforcing equivalence at the bounce, and the background evolution of the relevant observables can be fitted with only one free parameter. It is seen that the non-perturbative effects of these loop cosmologies are universally encoded by a logarithmic correction that only depends on the bounce curvature of the model. In addition, we find that the best fit value of the free parameter can be very approximately written in terms of fundamental parameters of the underlying quantum description for the three models. The values of the best fits can be written in terms of the bounce density in a simple manner, and the values for each model are related to one another by a proportionality relation involving only the Barbero-Immirzi parameter.
Address [Delhom, Adria; Singh, Parampreet] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA, Email: adria.delhom@gmail.com;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001025410500003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5583
Permanent link to this record
 

 
Author Capozziello, S.; Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J.
Title The virial theorem and the dark matter problem in hybrid metric-Palatini gravity Type Journal Article
Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 07 Issue (up) 7 Pages 024 - 19pp
Keywords modified gravity; dark matter theory; galaxy clusters
Abstract Hybrid metric-Palatini gravity is a recently proposed theory, consisting of the superposition of the metric Einstein-Hilbert Lagrangian with an f(R) term constructed a la Palatini. The theory predicts the existence of a long-range scalar field, which passes the Solar System observational constraints, even if the scalar field is very light, and modifies the cosmological and galactic dynamics. Thus, the theory opens new possibilities to approach, in the same theoretical framework, the problems of both dark energy and dark matter. In this work, we consider the generalized virial theorem in the scalar-tensor representation of the hybrid metric-Palatini gravity. More specifically, taking into account the relativistic collisionless Boltzmann equation, we show that the supplementary geometric terms in the gravitational field equations provide an effective contribution to the gravitational potential energy. We show that the total virial mass is proportional to the effective mass associated with the new terms generated by the effective scalar field, and the baryonic mass. In addition to this, we also consider astrophysical applications of the model and show that the model predicts that the mass associated to the scalar field and its effects extend beyond the virial radius of the clusters of galaxies. In the context of the galaxy cluster velocity dispersion profiles predicted by the hybrid metric-Palatini model, the generalized virial theorem can be an efficient tool in observationally testing the viability of this class of generalized gravity models.
Address [Capozziello, Salvatore] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy, Email: capozzie@na.infn.it;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000322582000025 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1531
Permanent link to this record
 

 
Author Lobo, F.S.N.; Olmo, G.J.; Rubiera-Garcia, D.
Title Semiclassical geons as solitonic black hole remnants Type Journal Article
Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 07 Issue (up) 7 Pages 011 - 10pp
Keywords modified gravity; primordial black holes; Wormholes; quantum field theory on curved space
Abstract We find that the end state of black hole evaporation could be represented by non-singular and without event horizon stable solitonic remnants with masses of the order the Planck scale and up to similar to 16 units of charge. Though these objects are locally indistinguishable from spherically symmetric, massive electric (or magnetic) charges, they turn out to be sourceless geons containing a wormhole generated by the electromagnetic field. Our results are obtained by interpreting semiclassical corrections to Einstein's theory in the first-order (Palatini) formalism, which yields second-order equations and avoids the instabilities of the usual (metric) formulation of quadratic gravity. We also discuss the potential relevance of these solutions for primordial black holes and the dark matter problem.
Address [Lobo, Francisco S. N.] Univ Lisbon, Ctr Astron & Astrofis, P-1749016 Lisbon, Portugal, Email: flobo@cii.fc.ul.pt;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000322582000012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1532
Permanent link to this record
 

 
Author Guerrero, M.; Mora-Perez, G.; Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D.
Title Rotating black holes in Eddington-inspired Born-Infeld gravity: an exact solution Type Journal Article
Year 2020 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 07 Issue (up) 7 Pages 058 - 31pp
Keywords modified gravity; GR black holes; Wormholes
Abstract We find an exact, rotating charged black hole solution within Eddington-inspired Born-Infeld gravity. To this end we employ a recently developed correspondence or mapping between modified gravity models built as scalars out of contractions of the metric with the Ricci tensor, and formulated in metric-affine spaces (Ricci-Based Gravity theories) and General Relativity. This way, starting from the Kerr-Newman solution, we show that this mapping bring us the axisymmetric solutions of Eddington-inspired Born-Infeld gravity coupled to a certain model of non-linear electrodynamics. We discuss the most relevant physical features of the solutions obtained this way, both in the spherically symmetric limit and in the fully rotating regime. Moreover, we further elaborate on the potential impact of this important technical progress for bringing closer the predictions of modified gravity with the astrophysical observations of compact objects and gravitational wave astronomy.
Address [Guerrero, Merce; Rubiera-Garcia, Diego] Univ Complutense Madrid, Dept Fis Teor, E-28040 Madrid, Spain, Email: merguerr@ucm.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000609085900005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4682
Permanent link to this record