|   | 
Details
   web
Records
Author ANTARES Collaboration (Adrian-Martinez, S. et al); Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Lambard, G.; Mangano, S.; Ruiz-Rivas, J.; Sanchez-Losa, A.; Yepes, H.; Zornoza, J.D.; Zuñiga, J.
Title Search for Cosmic Neutrino Point Sources with Four Years of Data from the Antares Telescope Type Journal Article
Year 2012 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 760 Issue (down) 1 Pages 53 - 10pp
Keywords astroparticle physics; cosmic rays; neutrinos
Abstract In this paper, a time-integrated search for point sources of cosmic neutrinos is presented using the data collected from 2007 to 2010 by the ANTARES neutrino telescope. No statistically significant signal has been found and upper limits on the neutrino flux have been obtained. Assuming an E-nu(-2). spectrum, these flux limits are at 1-10x10(-8) GeV cm(-2) s(-1) for declinations ranging from -90 degrees to 40 degrees. Limits for specific models of RX J1713.7-3946 and Vela X, which include information on the source morphology and spectrum, are also given.
Address [Adrian-Martinez, S.; Ardid, M.; Bou-Cabo, M.; Ferri, M.; Larosa, G.; Martinez-Mora, J. A.] Univ Politecn Valencia, Inst Invest Gestio Integrada Zones Costaneres IGI, E-46730 Gandia, Spain
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000310922200053 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1219
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Abreu, P. et al); Pastor, S.
Title Constraints on the origin of cosmic rays above 10^18 eV from large-scale anisotropy searches in data of the Pierre Auger Observatory Type Journal Article
Year 2013 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.
Volume 762 Issue (down) 1 Pages L13 - 8pp
Keywords astroparticle physics; cosmic rays
Abstract A thorough search for large-scale anisotropies in the distribution of arrival directions of cosmic rays detected above 10(18) eV at the Pierre Auger Observatory is reported. For the first time, these large-scale anisotropy searches are performed as a function of both the right ascension and the declination and expressed in terms of dipole and quadrupole moments. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Upper limits on dipole and quadrupole amplitudes are derived under the hypothesis that any cosmic ray anisotropy is dominated by such moments in this energy range. These upper limits provide constraints on the production of cosmic rays above 10(18) eV, since they allow us to challenge an origin from stationary galactic sources densely distributed in the galactic disk and emitting predominantly light particles in all directions.
Address [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Diogo, F.; Espadanal, J.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Santos, E.; Tome, B.] Univ Tecn Lisboa, LIP, Lisbon, Portugal
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-8205 ISBN Medium
Area Expedition Conference
Notes WOS:000312488400013 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1279
Permanent link to this record
 

 
Author ANTARES Collaboration (Adrian-Martinez, S. et al); Bigongiari, C.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Lambard, G.; Mangano, S.; Ruiz-Rivas, J.; Salesa, F.; Sanchez-Losa, A.; Toscano, S.; Yepes, H.; Zornoza, J.D.; Zuñiga, J.
Title Search for a correlation between ANTARES neutrinos and Pierre Auger Observatory UHECRs arrival directions Type Journal Article
Year 2013 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 774 Issue (down) 1 Pages 19 - 7pp
Keywords astroparticle physics; cosmic rays; neutrinos
Abstract A multimessenger analysis optimized for a correlation of arrival directions of ultra-high energy cosmic rays (UHECRs) and neutrinos is presented and applied to 2190 neutrino candidate events detected in 2007-2008 by the ANTARES telescope and 69 UHECRs observed by the Pierre Auger Observatory between 2004 January 1 and 2009 December 31. No significant correlation is observed. Assuming an equal neutrino flux (E-2 energy spectrum) from all UHECR directions, a 90% CL upper limit on the neutrino flux of 5.0 x 10(-8) GeV cm(-2) s(-1) per source is derived.
Address [Adrian-Martinez, S.; Ardid, M.; Bou-Cabo, M.; Camarena, F.; Ferri, M.; Larosa, G.; Martinez-Mora, J. A.] Univ Politecn Valencia, Inst Invest Gesti Integrada Zones Costanere IGIC, E-46730 Gandia, Spain
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000323426700019 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1565
Permanent link to this record
 

 
Author Johannesson, G.; Ruiz de Austri, R.; Vincent, A.C.; Moskalenko, I.V.; Orlando, E.; Porter, T.A.; Strong, A.W.; Trotta, R.; Feroz, F.; Graff, P.; Hobson, M.P.
Title Bayesian analysis of cosmic-ray propagation: evidence against homogeneous diffusion Type Journal Article
Year 2016 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 824 Issue (down) 1 Pages 16 - 19pp
Keywords astroparticle physics; cosmic rays; diffusion; Galaxy: general; ISM: general; methods: statistical
Abstract We present the results of the most complete scan of the parameter space for cosmic ray (CR) injection and propagation. We perform a Bayesian search of the main GALPROP parameters, using the MultiNest nested sampling algorithm, augmented by the BAMBI neural network machine-learning package. This is the first study to separate out low-mass isotopes (p, (p) over bar and He) from the usual light elements (Be, B, C, N, and O). We find that the propagation parameters that best-fit p, (p) over bar, and He data are significantly different from those that fit light elements, including the B/C and Be-10/Be-9 secondary-to-primary ratios normally used to calibrate propagation parameters. This suggests that each set of species is probing a very different interstellar medium, and that the standard approach of calibrating propagation parameters using B/C can lead to incorrect results. We present posterior distributions and best-fit parameters for propagation of both sets of nuclei, as well as for the injection abundances of elements from H to Si. The input GALDEF files with these new parameters will be included in an upcoming public GALPROP update.
Address [Johannesson, G.] Univ Iceland, Inst Sci, Dunhaga 3, IS-107 Reykjavik, Iceland
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000377937300016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2727
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Abreu, P. et al); Pastor, S.
Title Identifying clouds over the Pierre Auger Observatory using infrared satellite data Type Journal Article
Year 2013 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 50-52 Issue (down) Pages 92-101
Keywords Ultra-high energy cosmic rays; Pierre Auger Observatory; Extensive air showers; Atmospheric monitoring; Clouds; Satellites
Abstract We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud. identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km(2) of the Pierre Auger Observatory twice per hour with a spatial resolution of similar to 2.4 km by similar to 5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories.
Address [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Ponce, V. H.; Roulet, E.; Sidelnik, I.] Ctr Atom Bariloche, San Carlos De Bariloche, Rio Negro, Argentina
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes WOS:000329271000011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1690
Permanent link to this record