|   | 
Details
   web
Records
Author Guerrero, M.; Mora-Perez, G.; Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D.
Title Rotating black holes in Eddington-inspired Born-Infeld gravity: an exact solution Type Journal Article
Year 2020 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 07 Issue (up) 7 Pages 058 - 31pp
Keywords modified gravity; GR black holes; Wormholes
Abstract We find an exact, rotating charged black hole solution within Eddington-inspired Born-Infeld gravity. To this end we employ a recently developed correspondence or mapping between modified gravity models built as scalars out of contractions of the metric with the Ricci tensor, and formulated in metric-affine spaces (Ricci-Based Gravity theories) and General Relativity. This way, starting from the Kerr-Newman solution, we show that this mapping bring us the axisymmetric solutions of Eddington-inspired Born-Infeld gravity coupled to a certain model of non-linear electrodynamics. We discuss the most relevant physical features of the solutions obtained this way, both in the spherically symmetric limit and in the fully rotating regime. Moreover, we further elaborate on the potential impact of this important technical progress for bringing closer the predictions of modified gravity with the astrophysical observations of compact objects and gravitational wave astronomy.
Address [Guerrero, Merce; Rubiera-Garcia, Diego] Univ Complutense Madrid, Dept Fis Teor, E-28040 Madrid, Spain, Email: merguerr@ucm.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000609085900005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4682
Permanent link to this record
 

 
Author Creminelli, P.; Loayza, N.; Serra, F.; Trincherini, E.; Trombetta, L.G.
Title Hairy black-holes in shift-symmetric theories Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue (up) 8 Pages 045 - 24pp
Keywords Black Holes; Classical Theories of Gravity
Abstract Scalar hair of black holes in theories with a shift symmetry are constrained by the no-hair theorem of Hui and Nicolis, assuming spherical symmetry, time-independence of the scalar field and asymptotic flatness. The most studied counterexample is a linear coupling of the scalar with the Gauss-Bonnet invariant. However, in this case the norm of the shift-symmetry current J(2) diverges at the horizon casting doubts on whether the solution is physically sound. We show that this is not an issue since J(2) is not a scalar quantity, since J(mu) is not a diffinvariant current in the presence of Gauss-Bonnet. The same theory can be written in Horndeski form with a non-analytic function G(5)similar to log X . In this case the shift-symmetry current is diff-invariant, but contains powers of X in the denominator, so that its divergence at the horizon is again immaterial. We confirm that other hairy solutions in the presence of non-analytic Horndeski functions are pathological, featuring divergences of physical quantities as soon as one departs from time-independence and spherical symmetry. We generalise the no-hair theorem to Beyond Horndeski and DHOST theories, showing that the coupling with Gauss-Bonnet is necessary to have hair.
Address [Creminelli, Paolo] Abdus Salaam Int Ctr Theoret Phys, Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy, Email: creminel@ictp.it;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000562728200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4515
Permanent link to this record
 

 
Author Guerrero, M.; Olmo, G.J.; Rubiera-Garcia, D.; Saez-Chillon Gomez, D.
Title Shadows and optical appearance of black bounces illuminated by a thin accretion disk Type Journal Article
Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 08 Issue (up) 8 Pages 036 - 19pp
Keywords GR black holes; Wormholes; modified gravity; accretion
Abstract We study the light rings and shadows of an uniparametric family of spherically symmetric geometries interpolating between the Schwarzschild solution, a regular black hole, and a traversable wormhole, and dubbed as black bounces, all of them sharing the same critical impact parameter. We consider the ray-tracing method in order to study the impact parameter regions corresponding to the direct, lensed, and photon ring emissions, finding a broadening of all these regions for black bounce solutions as compared to the Schwarzschild one. Using this, we determine the optical appearance of black bounces when illuminated by three standard toy models of optically and geometrically thin accretion disks viewed in face-on orientation.
Address [Guerrero, Merce; Rubiera-Garcia, Diego] Univ Complutense Madrid, Dept Fis Teor, E-28040 Madrid, Spain, Email: merguerr@ucm.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000686656000022 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4943
Permanent link to this record
 

 
Author Martinelli, M.; Scarcella, F.; Hogg, N.B.; Kavanagh, B.J.; Gaggero, D.; Fleury, P.
Title Dancing in the dark: detecting a population of distant primordial black holes Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 08 Issue (up) 8 Pages 006 - 47pp
Keywords dark matter theory; gravitational waves / experiments; gravitational waves / sources; primordial black holes
Abstract Primordial black holes (PBHs) are compact objects proposed to have formed in the early Universe from the collapse of small-scale over-densities. Their existence may be detected from the observation of gravitational waves (GWs) emitted by PBH mergers, if the signals can be distinguished from those produced by the merging of astrophysical black holes. In this work, we forecast the capability of the Einstein Telescope, a proposed third-generation GW observatory, to identify and measure the abundance of a subdominant population of distant PBHs, using the difference in the redshift evolution of the merger rate of the two populations as our discriminant. We carefully model the merger rates and generate realistic mock catalogues of the luminosity distances and errors that would be obtained from GW signals observed by the Einstein Telescope. We use two independent statistical methods to analyse the mock data, finding that, with our more powerful, likelihood-based method, PBH abundances as small as fPBH approximate to 7 x 10(-6) ( fPBH approximate to 2 x 10(-6)) would be distinguishable from f(PBH) = 0 at the level of 3 sigma with a one year (ten year) observing run of the Einstein Telescope. Our mock data generation code, darksirens, is fast, easily extendable and publicly available on GitLab.
Address [Martinelli, Matteo] INAF Osservatorio Astron Roma, Via Frascati 33, I-00040 Rome, Italy, Email: matteo.martinelli@inaf.it;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000911612900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5461
Permanent link to this record
 

 
Author Navarro-Salas, J.
Title Black holes, conformal symmetry, and fundamental fields Type Journal Article
Year 2024 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 41 Issue (up) 8 Pages 085003 - 14pp
Keywords black holes; horizons; singularities; conformal symmetry; quantum fields; Standard Model
Abstract Cosmic censorship protects the outside world from black hole singularities and paves the way for assigning entropy to gravity at the event horizons. We point out a tension between cosmic censorship and the quantum backreacted geometry of Schwarzschild black holes, induced by vacuum polarization and driven by the conformal anomaly. A similar tension appears for the Weyl curvature hypothesis at the Big Bang singularity. We argue that the requirement of exact conformal symmetry resolves both conflicts and has major implications for constraining the set of fundamental constituents of the Standard Model.
Address [Navarro-Salas, Jose] Univ Valencia, Dept Fis Teor, IFIC, CSIC, E-46100 Burjassot, Valencia, Spain, Email: jnavarro@ific.uv.es
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:001187435100001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 6029
Permanent link to this record
 

 
Author Santos, A.C.L.; Muniz, C.R.; Maluf, R.V.
Title Yang-Mills Casimir wormholes in D=2+1 Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 09 Issue (up) 9 Pages 022 - 24pp
Keywords Wormholes; Exact solutions; black holes and black hole thermodynamics in GR and beyond; gravity
Abstract This work presents new three-dimensional traversable wormhole solutions sourced by the Casimir density and pressures related to the quantum vacuum fluctuations in Yang-Mills (Y-M) theory. We begin by analyzing the noninteracting Y-M Casimir wormholes, initially considering an arbitrary state parameter omega and determine a simple constant wormhole shape function. Next, we introduce a new methodology for deforming the state parameter to find well-behaved redshift functions. The wormhole can be interpreted as a legitimate Casimir wormhole with an expected average state parameter of omega = 2. Then, we investigate the wormhole curvature properties, energy conditions, and stability. Furthermore, we discover a novel family of traversable wormhole solutions sourced by the quantum vacuum fluctuations of interacting Yang-Mills fields with a more complex shape function. Deforming the effective state parameter similarly, we obtain well-behaved redshift functions and traversable wormhole solutions. Finally, we examine the energy conditions and stability of solutions in the interacting scenario and compare to the noninteracting case.
Address [Santos, Alana C. L.; Maluf, Roberto V.] Univ Fed Ceara UFC, Departamento Fis, Campus Pici,6030, BR-60455760 Fortaleza, Ceara, Brazil, Email: alanasantos@fisica.ufc.br;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001196198800004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6031
Permanent link to this record
 

 
Author Galli, P.; Ortin, T.; Perz, J.; Shahbazi, C.S.
Title From supersymmetric to non-supersymmetric black holes Type Journal Article
Year 2012 Publication Fortschritte der Physik-Progress of Physics Abbreviated Journal Fortschritte Phys.-Prog. Phys.
Volume 60 Issue (up) 9-10 Pages 1026-1029
Keywords Black holes; supergravity
Abstract Methods similar to those used for obtaining supersymmetric black hole solutions can be employed to find also non-supersymmetric solutions. We briefly review some of them, with the emphasis on the non-extremal deformation ansatz of [1].
Address [Ortin, Tomas; Perz, Jan; Shahbazi, C. S.] Inst Fis Teor UAM CSIC, Madrid 28049, Spain, Email: Pietro.Galli@ific.uv.es;
Corporate Author Thesis
Publisher Wiley-V C H Verlag Gmbh Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0015-8208 ISBN Medium
Area Expedition Conference
Notes WOS:000308301500012 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1151
Permanent link to this record