toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Wilson, J.N. et al; Algora, A. doi  openurl
  Title Angular momentum generation in nuclear fission Type Journal Article
  Year 2021 Publication Nature Abbreviated Journal Nature  
  Volume 590 Issue (down) 7847 Pages 566-570  
  Keywords  
  Abstract When a heavy atomic nucleus splits (fission), the resulting fragments are observed to emerge spinning(1); this phenomenon has been a mystery in nuclear physics for over 40 years(2,3). The internal generation of typically six or seven units of angular momentum in each fragment is particularly puzzling for systems that start with zero, or almost zero, spin. There are currently no experimental observations that enable decisive discrimination between the many competing theories for the mechanism that generates the angular momentum(4-12). Nevertheless, the consensus is that excitation of collective vibrational modes generates the intrinsic spin before the nucleus splits (pre-scission). Here we show that there is no significant correlation between the spins of the fragment partners, which leads us to conclude that angular momentum in fission is actually generated after the nucleus splits (post-scission). We present comprehensive data showing that the average spin is strongly mass-dependent, varying in saw-tooth distributions. We observe no notable dependence of fragment spin on the mass or charge of the partner nucleus, confirming the uncorrelated post-scission nature of the spin mechanism. To explain these observations, we propose that the collective motion of nucleons in the ruptured neck of the fissioning system generates two independent torques, analogous to the snapping of an elastic band. A parameterization based on occupation of angular momentum states according to statistical theory describes the full range of experimental data well. This insight into the role of spin in nuclear fission is not only important for the fundamental understanding and theoretical description of fission, but also has consequences for the gamma-ray heating problem in nuclear reactors(13,14), for the study of the structure of neutron-rich isotopes(15,16), and for the synthesis and stability of super-heavy elements(17,18). gamma-ray spectroscopy experiments on the origin of spin in the products of nuclear fission of spin-zero nuclei suggest that the fission fragments acquire their spin after scission, rather than before.  
  Address [Wilson, J. N.; Thisse, D.; Lebois, M.; Jovancevic, N.; Adsley, P.; Babo, M.; Chakma, R.; Delafosse, C.; Haefner, G.; Hauschild, K.; Ibrahim, F.; Ljungvall, J.; Lopez-Martens, A.; Lozeva, R.; Matea, I; Nemer, J.; Popovitch, Y.; Qi, L.; Tocabens, G.; Verney, D.] Univ Paris Saclay, IJC Lab, CNRS, IN2P3, Orsay, France, Email: jonathan.wilson@ijclab.in2p3.fr  
  Corporate Author Thesis  
  Publisher Nature Research Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000621583600006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4717  
Permanent link to this record
 

 
Author T2K Collaboration (Abe, K. et al); Antonova, M.; Cervera-Villanueva, A.; Fernandez, P.; Izmaylov, A.; Novella, P. url  doi
openurl 
  Title Constraint on the matter-antimatter symmetry-violating phase in neutrino oscillations Type Journal Article
  Year 2020 Publication Nature Abbreviated Journal Nature  
  Volume 580 Issue (down) 7803 Pages 339-344  
  Keywords  
  Abstract The charge-conjugation and parity-reversal (CP) symmetry of fundamental particles is a symmetry between matter and antimatter. Violation of this CP symmetry was first observed in 1964(1), and CP violation in the weak interactions of quarks was soon established(2). Sakharov proposed(3) that CP violation is necessary to explain the observed imbalance of matter and antimatter abundance in the Universe. However, CP violation in quarks is too small to support this explanation. So far, CP violation has not been observed in non-quark elementary particle systems. It has been shown that CP violation in leptons could generate the matter-antimatter disparity through a process called leptogenesis(4). Leptonic mixing, which appears in the standard model's charged current interactions(5,6), provides a potential source of CP violation through a complex phase dCP, which is required by some theoretical models of leptogenesis(7-9). This CP violation can be measured in muon neutrino to electron neutrino oscillations and the corresponding antineutrino oscillations, which are experimentally accessible using accelerator-produced beams as established by the Tokai-to-Kamioka (T2K) and NOvA experiments(10,11). Until now, the value of dCP has not been substantially constrained by neutrino oscillation experiments. Here we report a measurement using long-baseline neutrino and antineutrino oscillations observed by the T2K experiment that shows a large increase in the neutrino oscillation probability, excluding values of dCP that result in a large increase in the observed antineutrino oscillation probability at three standard deviations (3 sigma). The 3 sigma confidence interval for delta(CP), which is cyclic and repeats every 2p, is [-3.41, -0.03] for the so-called normal mass ordering and [-2.54, -0.32] for the inverted mass ordering. Our results indicate CP violation in leptons and our method enables sensitive searches for matter-antimatter asymmetry in neutrino oscillations using accelerator-produced neutrino beams. Future measurements with larger datasets will test whether leptonic CP violation is larger than the CP violation in quarks.  
  Address [Berguno, D. Bravo; Ishii, T.; Labarga, L.] Univ Autonoma Madrid, Dept Theoret Phys, Madrid, Spain  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000530151300023 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4388  
Permanent link to this record
 

 
Author BABAR Collaboration (Lees, J.P. et al); Martinez-Vidal, F.; Oyanguren, A. url  doi
openurl 
  Title Search for a Stable Six-Quark State at BABAR Type Journal Article
  Year 2019 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 122 Issue (down) 7 Pages 072002 - 7pp  
  Keywords  
  Abstract Recent investigations have suggested that the six-quark combination uuddss could be a deeply bound state (S) that has eluded detection so far, and a potential dark matter candidate. We report the first search for a stable, doubly strange six-quark state in (sic) > S (Lambda) over bar(Lambda) over bar decays based on a sample of 90 x 10(6)(sic)(2S) and 110 x 10(6)(sic)(3S) decays collected by the BABAR experiment. No signal is observed, and 90% confidence level limits on the combined (sic)(2S, 3S) -> S (Lambda) over bar(Lambda) over bar branching fraction in the range (1.2-1.4) x 10(-7) are derived for m(s) < 2.05 GeV. These bounds set stringent limits on the existence of such exotic particles.  
  Address [Lees, J. P.; Poireau, V; Tisserand, V] Univ Savoie, Lab Annecy le Vieux Phys Particules LAPP, CNRS IN2P3, F-74941 Annecy Le Vieux, France  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000459583400006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3921  
Permanent link to this record
 

 
Author Nath, N.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title Testing generalized CP symmetries with precision studies at DUNE Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue (down) 7 Pages 075005 - 13pp  
  Keywords  
  Abstract We examine the capabilities of the DUNE experiment in probing leptonic CP violation within the framework of theories with generalized CP symmetries characterized by the texture zeros of the corresponding CP transformation matrices. We investigate DUNE's potential to probe the two least known oscillation parameters, the atmospheric mixing angle theta(23) and the Dirac CP phase delta(CP). We fix theory-motivated benchmarks for (sin(2)theta(23), delta(CP)) and take them as true values in our simulations. Assuming 3.5 years of neutrino running plus 3.5 years in the antineutrino mode, we show that in all cases DUNE can significantly constrain and in certain cases rule out the generalized CP texture zero patterns.  
  Address [Nath, Newton] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China, Email: newton@ihep.ac.cn;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000463893200004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3976  
Permanent link to this record
 

 
Author Yu, Q.X.; Liang, W.H.; Bayar, M.; Oset, E. url  doi
openurl 
  Title Line shape and D-(*())(D)over-bar(()*()) probabilities of psi(3770) from the e(+) e(-) -> D(D)over-bar reaction Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue (down) 7 Pages 076002 - 17pp  
  Keywords  
  Abstract We have performed a calculation of the D (D) over bar, D (D) over bar*, D*(D) over bar, D*(D) over bar* components in the wave function of the psi(3770). For this we make use of the P-3(0) model to find the coupling of psi(3770) to these components, that with an elaborate angular momentum algebra can be obtained with only one parameter. Then we use data for the e(+)e(-) -> D (D) over bar reaction, from where we determine a form factor needed in the theoretical framework, as well as other parameters needed to evaluate the meson-meson self-energy of the psi(3770). Once this is done we determine the Z probability to still have a vector core and the probability to have the different meson components. We find Z about 80%-85%, and the individual meson-meson components are rather small, providing new empirical information to support the largely q (q) over bar component of vector mesons, and the psi(3770) in particular. A discussion is done of the meaning of the terms obtained for the case of the open channels where the concept of probability cannot be strictly used.  
  Address [Yu, Q. X.] Beijing Normal Univ, Coll Nucl Sci & Technol, Beijing 100875, Peoples R China, Email: qixinyu@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000463892700005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3977  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva