|   | 
Details
   web
Records
Author Tonev, D. et al; Gadea, A.
Title Transition probabilities in P-31 and S-31: A test for isospin symmetry Type Journal Article
Year 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 821 Issue (up) Pages 136603 - 6pp
Keywords Mirror nuclei; Lifetime measurements; Transition probabilities; Isospin symmetry; Microscopic multiphonon model
Abstract Excited states in the mirror nuclei P-31 and S-31 were populated in the 1p and 1n exit channels of the reaction Ne-20 + C-12, at a beam energy of 33 MeV. The Ne-20 beam was delivered for the first time by the Piave-Alpi accelerator of the Laboratori Nazionali di Legnaro. Angular correlations of coincident gamma-rays and Doppler-shift attenuation lifetime measurements were performed using the multi-detector array GASP in conjunction with the EUCLIDES charged particle detector. In the observed B(E1) strengths, the isoscalar component, amounting to 24% of the isovector one, provides strong evidence for breaking of the isospin symmetry in the A = 31 mass region. Self-consistent beyond mean field calculations using Equation of Motion method based on a chiral potential and including two- and three-body forces reproduce well the experimental B(E1) strengths, reinforcing our conclusion. Coherent mixing from higher-lying states involving the Giant Isovector Monopole Resonance accounts well for the effect observed. The breaking of the isospin symmetry originates from the violation of the charge symmetry of the two- and three-body parts of the potential, only related to the Coulomb interaction.
Address [Tonev, D.; Goutev, N.; Pavlov, P.; Pantaleev, I. L.; Iliev, S.; Yavahchova, M. S.; Demerdjiev, A.; Dimitrov, D. T.; Geleva, E.; Laftchiev, H.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BG-1784 Sofia, Bulgaria, Email: dimitar.tonev@inrne.bas.bg
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000734909800003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5064
Permanent link to this record
 

 
Author Mandal, S.; Rojas, N.; Srivastava, R.; Valle, J.W.F.
Title Dark matter as the origin of neutrino mass in the inverse seesaw mechanism Type Journal Article
Year 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 821 Issue (up) Pages 136609 - 15pp
Keywords
Abstract We propose that neutrino masses are “seeded” by a dark sector within the inverse seesaw mechanism. This way we have a new, “hidden”, variant of the scotogenic scenario for radiative neutrino masses. We discuss both explicit and dynamical lepton number violation. In addition to invisible Higgs decays with majoron emission, we discuss in detail the pheneomenolgy of dark matter, as well as the novel features associated to charged lepton flavour violation, and neutrino physics.
Address [Mandal, Sanjoy; Valle, Jose W. F.] Univ Valencia, Inst Fis Corpuscular, AHEP Grp, CSIC, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: smandal@ific.uv.es;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000734909800005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5065
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Henry, L.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.
Title Precise determination of the B-s(0)-B-s(-0) oscillation frequency Type Journal Article
Year 2022 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 18 Issue (up) Pages 54-58
Keywords
Abstract Mesons comprising a beauty quark and strange quark can oscillate between particle (B-s(0)) and antiparticle (B-s(-0)) flavour eigenstates, with a frequency given by the mass difference between heavy and light mass eigenstates, Delta m(s). Here we present a measurement of Delta m(s) using B-s(0) -> D-s(-)pi(+) decays produced in proton-proton collisions collected with the LHCb detector at the Large Hadron Collider. The oscillation frequency is found to be Delta m(s) = 17.7683 +/- 0.0051 +/- 0.0032 ps(-1), where the first uncertainty is statistical and the second is systematic. This measurement improves on the current Delta m(s) precision by a factor of two. We combine this result with previous LHCb measurements to determine Delta m(s) = 17.7656 +/- 0.0057 ps(-1), which is the legacy measurement of the original LHCb detector.
Address [Aaij, R.; Butter, J. S.; Akiba, K. Carvalho; Sole, S. Ferreres; Gabriel, E.; Geertsema, R. E.; Greeven, L. M.; Heijhoff, K.; Hulsbergen, W.; Hynds, D.; Jans, E.; Klaver, S.; Koppenburg, P.; Kostiuk, I; Kuindersma, H. S.; Martinez, M. Lucio; Lukashenko, V; Mauri, A.; Merk, M.; Pellegrino, A.; Sanchez Gras, C.; Schubiger, M.; Snoch, A.; Tuning, N.; Usachov, A.; van Beuzekom, M.; Veronesi, M.] Nikhef Natl Inst Subatom Phys, Amsterdam, Netherlands, Email: alessandro.bertolin@pd.infn.it
Corporate Author Thesis
Publisher Nature Portfolio Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1745-2473 ISBN Medium
Area Expedition Conference
Notes WOS:000739810100002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5075
Permanent link to this record
 

 
Author Folgado, M.G.; Sanz, V.
Title Exploring the political pulse of a country using data science tools Type Journal Article
Year 2022 Publication Journal of Computational Social Science Abbreviated Journal J. Comput. Soc. Sci.
Volume 5 Issue (up) Pages 987-1000
Keywords Politics; Spain; Sentiment analysis; Artificial Intelligence; Machine learning; Neural networks; Natural Language Processing (NLP)
Abstract In this paper we illustrate the use of Data Science techniques to analyse complex human communication. In particular, we consider tweets from leaders of political parties as a dynamical proxy to political programmes and ideas. We also study the temporal evolution of their contents as a reaction to specific events. We analyse levels of positive and negative sentiment in the tweets using new tools adapted to social media. We also train a Fully-Connected Neural Network (FCNN) to recognise the political affiliation of a tweet. The FCNN is able to predict the origin of the tweet with a precision in the range of 71-75%, and the political leaning (left or right) with a precision of around 90%. This study is meant to be viewed as an example of how to use Twitter data and different types of Data Science tools for a political analysis.
Address [Folgado, Miguel G.; Sanz, Veronica] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, Valencia 46980, Spain, Email: migarfol@upvnet.upv.es;
Corporate Author Thesis
Publisher Springernature Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2432-2717 ISBN Medium
Area Expedition Conference
Notes WOS:000742263500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5077
Permanent link to this record
 

 
Author Asai, M.; Cortes-Giraldo, M.A.; Gimenez-Alventosa, V.; Gimenez, V.; Salvat, F.
Title The PENELOPE Physics Models and Transport Mechanics. Implementation into Geant4 Type Journal Article
Year 2021 Publication Frontiers in Physics Abbreviated Journal Front. Physics
Volume 9 Issue (up) Pages 738735 - 20pp
Keywords coupled electron-photon transport; Monte Carlo simulation; PENELOPE code system; random-hinge method; Geant4 toolkit
Abstract A translation of the penelope physics subroutines to C++, designed as an extension of the Geant4 toolkit, is presented. The Fortran code system penelope performs Monte Carlo simulation of coupled electron-photon transport in arbitrary materials for a wide energy range, nominally from 50 eV up to 1 GeV. Penelope implements the most reliable interaction models that are currently available, limited only by the required generality of the code. In addition, the transport of electrons and positrons is simulated by means of an elaborate class II scheme in which hard interactions (involving deflection angles or energy transfers larger than pre-defined cutoffs) are simulated from the associated restricted differential cross sections. After a brief description of the interaction models adopted for photons and electrons/positrons, we describe the details of the class-II algorithm used for tracking electrons and positrons. The C++ classes are adapted to the specific code structure of Geant4. They provide a complete description of the interactions and transport mechanics of electrons/positrons and photons in arbitrary materials, which can be activated from the G4ProcessManager to produce simulation results equivalent to those from the original penelope programs. The combined code, named PenG4, benefits from the multi-threading capabilities and advanced geometry and statistical tools of Geant4.
Address [Asai, Makoto] SLAC Natl Accelerator Lab, Menlo Pk, CA USA, Email: miancortes@us.es;
Corporate Author Thesis
Publisher Frontiers Media Sa Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-424x ISBN Medium
Area Expedition Conference
Notes WOS:000742889400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5080
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Cardillo, F.; Castillo Gimenez, V.; Costa, M.J.; Didenko,, M.; Escobar, C.; Estrada Pastor, O.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Mamuzic, J.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Moreno Llacer, M.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Sanchez Sebastian, V.; Sayago Galvan, I.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M.
Title Search for new phenomena in three- or four-lepton events in pp collisions at root s=13 TeV with the ATLAS detector Type Journal Article
Year 2022 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 824 Issue (up) Pages 136832 - 24pp
Keywords
Abstract A search with minimal model dependence for physics beyond the Standard Model in events featuring three or four charged leptons (3l and 4l, l = e, mu) is presented. The analysis aims to be sensitive to a wide range of potential new-physics theories simultaneously. This analysis uses data from pp collisions delivered by the Large Hadron Collider at a centre-of-mass energy of root s = 13 TeV and recorded with the ATLAS detector, corresponding to the full Run 2 dataset of 139 fb(-1). The 3l and 4l phase space is divided into 22 event categories according to the number of leptons in the event, the missing transverse momentum, the invariant mass of the leptons, and the presence of leptons originating from a Z-boson candidate. These event categories are analysed independently for the presence of deviations from the Standard Model. No statistically significant deviations from the Standard Model predictions are observed. Upper limits for all signal regions are reported in terms of the visible cross-section.
Address [Duvnjak, D.; Jackson, P.; Kong, A. X. Y.; Oliver, J. L.; Potti, H.; Ruggeri, T. A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000746454300012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5094
Permanent link to this record
 

 
Author Kim, J.S.; Lopez-Fogliani, D.E.; Perez, A.D.; Ruiz de Austri, R.
Title The new (g-2)(mu) and right-handed sneutrino dark matter Type Journal Article
Year 2022 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B
Volume 974 Issue (up) Pages 115637 - 23pp
Keywords
Abstract In this paper we investigate the (g – 2)(mu) discrepancy in the context of the R-parity conserving next-to minimal supersymmetric Standard Model plus right-handed neutrinos superfields. The model has the ability to reproduce neutrino physics data and includes the interesting possibility to have the right-handed sneutrino as the lightest supersymmetric particle and a viable dark matter candidate. Since right-handed sneutrinos are singlets, no new contributions for delta a(mu) with respect to the MSSM and NMSSM are present. However, the possibility to have the right-handed sneutrino as the lightest supersymmetric particle opens new ways to escape Large Hadron Collider and direct detection constraints. In particular, we find that dark matter masses within 10 less than or similar to m((upsilon) over tildeR) less than or similar to 600 GeV are fully compatible with current experimental constraints. Remarkably, not only spectra with light sleptons are needed, but we obtain solutions with m((mu) over tilde) greater than or similar to 600 GeV in the entire dark matter mass range that could be probed by new (g – 2)(mu) data in the near future. In addition, dark matter direct detection experiments will be able to explore a sizable portion of the allowed parameter space with mvR < 300 GeV, while indirect detection experiments will be able to probe a much smaller fraction within 200 less than or similar to m((nu)over tilde>R) less than or similar to 350 GeV.
Address [Kim, Jong Soo] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa, Email: jongsoo.kim@tu-dortmund.de;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0550-3213 ISBN Medium
Area Expedition Conference
Notes WOS:000760320700019 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5135
Permanent link to this record
 

 
Author Coves, A.; Maestre, H.; Archiles, R.; Andres, M.V.; Gimeno, B.
Title Surface-Impedance Formulation for Hollow-Core Waveguides Based on Subwavelength Gratings Type Journal Article
Year 2022 Publication IEEE Access Abbreviated Journal IEEE Access
Volume 10 Issue (up) Pages 18843-18854
Keywords Electromagnetic waveguides; Optical waveguides; Planar waveguides; Gratings; Surface waves; Surface impedance; Optical surface waves; Surface impedance; hollow-core waveguide; surface-relief grating
Abstract A rigorous Surface Impedance (SI) formulation for planar waveguides is presented. This modal technique splits the modal analysis of the waveguide in two steps. First, we obtain the modes characteristic equations as a function of the SI and, second, we need to obtain the surface impedance values using either analytical or numerical methods. We validate the technique by comparison with well-known analytical cases: the parallel-plate waveguide with losses and the dielectric slab waveguide. Then, we analyze an optical hollow-core waveguide defined by two high-contrast subwavelength gratings validating our results by comparison with reported values. Finally, we show the potential of our formulation with the analysis of a THz hollow-core waveguide defined by two surface-relief subwavelength gratings, including material losses in our formulation.
Address [Coves, Angela; Maestre, Haroldo] Univ Miguel Hernandez Elche, Dept Commun Engn I3E, Elche 03202, Spain, Email: angela.coves@umh.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-3536 ISBN Medium
Area Expedition Conference
Notes WOS:000760714900001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5139
Permanent link to this record
 

 
Author Khosa, C.K.; Sanz, V.
Title On the Impact of the LHC Run 2 Data on General Composite Higgs Scenarios Type Journal Article
Year 2022 Publication Advances in High Energy Physics Abbreviated Journal Adv. High. Energy Phys.
Volume 2022 Issue (up) Pages 8970837 - 13pp
Keywords
Abstract We study the impact of Run 2 LHC data on general composite Higgs scenarios, where nonlinear effects, mixing with additional scalars, and new fermionic degrees of freedom could simultaneously contribute to the modification of Higgs properties. We obtain new experimental limits on the scale of compositeness, the mixing with singlets and doublets with the Higgs, and the mass and mixing angle of top-partners. We also show that for scenarios where new fermionic degrees of freedom are involved in electroweak symmetry breaking, there is an interesting interplay among Higgs coupling measurements, boosted Higgs properties, SMEFT global analyses, and direct searches for single and double production of vector-like quarks.
Address [Khosa, Charanjit K.] Univ Genoa, Dipartimento Fis, Via Dodecaneso 33, I-16146 Genoa, Italy, Email: khosacharanjit@gmail.com;
Corporate Author Thesis
Publisher Hindawi Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1687-7357 ISBN Medium
Area Expedition Conference
Notes WOS:000766325700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5153
Permanent link to this record
 

 
Author Hirn, J.; Garcia, J.E.; Montesinos-Navarro, A.; Sanchez-Martin, R.; Sanz, V.; Verdu, M.
Title A deep Generative Artificial Intelligence system to predict species coexistence patterns Type Journal Article
Year 2022 Publication Methods in Ecology and Evolution Abbreviated Journal Methods Ecol. Evol.
Volume 13 Issue (up) Pages 1052-1061
Keywords artificial intelligence; direct interactions; generative adversarial networks; indirect interactions; species coexistence; variational AutoEncoders
Abstract Predicting coexistence patterns is a current challenge to understand diversity maintenance, especially in rich communities where these patterns' complexity is magnified through indirect interactions that prevent their approximation with classical experimental approaches. We explore cutting-edge Machine Learning techniques called Generative Artificial Intelligence (GenAI) to predict species coexistence patterns in vegetation patches, training generative adversarial networks (GAN) and variational AutoEncoders (VAE) that are then used to unravel some of the mechanisms behind community assemblage. The GAN accurately reproduces real patches' species composition and plant species' affinity to different soil types, and the VAE also reaches a high level of accuracy, above 99%. Using the artificially generated patches, we found that high-order interactions tend to suppress the positive effects of low-order interactions. Finally, by reconstructing successional trajectories, we could identify the pioneer species with larger potential to generate a high diversity of distinct patches in terms of species composition. Understanding the complexity of species coexistence patterns in diverse ecological communities requires new approaches beyond heuristic rules. Generative Artificial Intelligence can be a powerful tool to this end as it allows to overcome the inherent dimensionality of this challenge.
Address [Hirn, Johannes; Enrique Garcia, Jose; Sanz, Veronica] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Valencia, Spain, Email: miguel.verdu@ext.uv.es
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-210x ISBN Medium
Area Expedition Conference
Notes WOS:000765239700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5155
Permanent link to this record