toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Perez-Ramos, R.; Sanchis-Lozano, M.A.; Sarkisyan-Grinbaum, E.K. url  doi
openurl 
  Title Searching for hidden matter with long-range angular correlations at e(+)e(-) colliders Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue (up) 5 Pages 053001 - 8pp  
  Keywords  
  Abstract The analysis of azimuthal correlations in multiparticle production can be useful to uncover the existence of new physics beyond the Standard Model, e.g., Hidden Valley, in e(+)e(-) annihilation at high energies. In this paper, based on previous theoretical studies and using the PYTHIA8 event generator, it is found that both azimuthal and rapidity long-range correlations are enhanced due to the presence of a new stage of matter on top of the QCD partonic cascade. Ridge structures, similar to those observed in hadronic collisions at the LHC, show up providing a possible signature of new physics at future e(+)e(-) colliders.  
  Address [Perez-Ramos, Redamy] DRII IPSA, Bis,63 Blvd Brandebourg, F-94200 Ivry, France, Email: redamy.perez-ramos@ipsa.fr;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000770948400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5179  
Permanent link to this record
 

 
Author Menendez, A.; Esperante, D.; Garcia-Olcina, R.; Torres, J.; Perez-Soler, J.; Marco, R.; Gimeno, B.; Martos, J.; Soret, J. doi  openurl
  Title RF Acquisition System Based on μTCA for Testing of High-Gradient Acceleration Cavities Type Journal Article
  Year 2022 Publication Electronics Abbreviated Journal Electronics  
  Volume 11 Issue (up) 5 Pages 720 - 22pp  
  Keywords radio frequency; accelerator cavities; mu TCA systems; Low Level RF system  
  Abstract The radio frequency (RF) laboratory hosted in the Corpuscular Physics Institute (IFIC) of the University of Valencia is designed to house a high-power and high-repetition-rate facility to test normal conduction RF accelerator cavities in the S-Band (2.9985 GHz) in order to perform R & D activities related to particle accelerator cavities. The system, which manages the entire process of RF signal generation, data acquisition and closed-loop control of the laboratory, is currently based on a modular and compact PXI platform system. This contribution details the development of a platform with similar features, but which is based on open architecture standards at both the hardware and software level. For this purpose, a complete system based on the μTCA platform has been developed. This new system must be able to work with accelerator cavities at other operating frequencies, such as 750 MHz, as well as to explore different options at firmware and software levels based on open-source codes.  
  Address [Menendez, Abraham; Esperante, Daniel; Marco, Ricardo; Gimeno, Benito] Univ Valencia, Inst Fis Corpuscular IF, CSIC, Paterna, Spain, Email: daniel.esperante@uv.es;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000772931900001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5189  
Permanent link to this record
 

 
Author de Anda, F.J.; Medina, O.; Valle, J.W.F.; Vaquera-Araujo, C.A. url  doi
openurl 
  Title Scotogenic Majorana neutrino masses in a predictive orbifold theory of flavor Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue (up) 5 Pages 055030 - 12pp  
  Keywords  
  Abstract The use of extra space-time dimensions provides a promising approach to the flavor problem. The chosen compactification of a 6-dimensional orbifold implies a remnant family symmetry A4. This makes interesting predictions for quark and lepton masses, for neutrino oscillations and neutrinoless double beta decay, providing also a very good global description of all flavor observables. Due to an auxiliary Z4 symmetry, we implement a scotogenic Majorana neutrino mass generation mechanism with a viable WIMP dark matter candidate.  
  Address [de Anda, Francisco J.] Tepatitlans Inst Theoret Studies, Tepatitlan De Morelos, Jalisco, Mexico, Email: fran@tepaits.mx;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000783936600003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5202  
Permanent link to this record
 

 
Author Bruschini, R.; Gonzalez, P. url  doi
openurl 
  Title Is chi(c1)(3872) generated from string breaking? Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue (up) 5 Pages 054028 - 6pp  
  Keywords  
  Abstract We show, from a diabatic analysis of lattice results for string breaking, that mixing of Q (Q) over bar with open-flavor meson-meson configurations may be expressed through a mixing potential which is order 1/m(Q). A relation between the minimum string breaking energy gap and the string tension comes out naturally. Using this relation, and matching the energy gap for b (b) over bar with lattice QCD data, we study the mixing in the c (c) over bar case without any additional parameter. A 1(++) bound state very close below the D-0(D) over bar*(0) threshold, in perfect correspondence with chi(c1)(3872), is predicted.  
  Address [Bruschini, R.; Gonzalez, P.] Univ Valencia, Inst Fis Corpuscular, Unidad Teor, CSIC, E-46980 Valencia, Spain, Email: roberto.bruschini@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000783750200005 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5203  
Permanent link to this record
 

 
Author Sieber, H.; Banerjee, D.; Crivelli, P.; Depero, E.; Gninenko, S.N.; Kirpichnikov, D.V.; Kirsanov, M.M.; Poliakov, V.; Molina Bueno, L. url  doi
openurl 
  Title Prospects in the search for a new light Z0 boson with the NA64 μexperiment at the CERN SPS Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue (up) 5 Pages 052006 - 9pp  
  Keywords  
  Abstract A light Z0 vector boson coupled to the second and third lepton generations through the L μ- L tau current with mass below 200 MeV provides a very viable explanation in terms of new physics to the recently confirmed og – 2 thorn μanomaly. This boson can be produced in the bremsstrahlung reaction μN – μNZ0 after a high energy muon beam collides with a target. NA64 μis a fixed-target experiment using a 160 GeV muon beam from the CERN Super Proton Synchrotron accelerator looking for Z0 production and its subsequent decays, Z0 – invisible. In this paper, we present the study of the NA64 μsensitivity to search for such a boson. This includes a realistic beam simulation, a detailed description of the detectors and a discussion about the main potential background sources. A pilot run is scheduled in order to validate the simulation results. If those are confirmed, NA64 μwill be able to explore all the remaining parameter space which could provide an explanation for the g – 2 muon anomaly in the L μ- L tau model.  
  Address [Sieber, H.; Crivelli, P.; Depero, E.; Bueno, L. Molina] Swiss Fed Inst Technol, Inst Particle Phys & Astrophys, CH-8093 Zurich, Switzerland, Email: laura.molina.bueno@cern.ch  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000787220100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5207  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva