toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hernandez, P.; Lopez-Pavon, J.; Rius, N.; Sandner, S. url  doi
openurl 
  Title Bounds on right-handed neutrino parameters from observable leptogenesis Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue (down) 12 Pages 012 - 58pp  
  Keywords Baryo-and Leptogenesis; Early Universe Particle Physics; Sterile or Heavy Neutrinos  
  Abstract We revisit the generation of a matter-antimatter asymmetry in the minimal extension of the Standard Model with two singlet heavy neutral leptons (HNL) that can explain neutrino masses. We derive an accurate analytical approximation to the solution of the complete linearized set of kinetic equations, which exposes the non-trivial parameter dependencies in the form of parameterization-independent CP invariants. The identification of various washout regimes relevant in different regions of parameter space sheds light on the relevance of the mass corrections in the interaction rates and clarifies the correlations of baryogenesis with other observables. In particular, by requiring that the measured baryon asymmetry is reproduced, we derive robust upper or lower bounds on the HNL mixings depending on their masses, and constraints on their flavour structure, as well as on the CP-violating phases of the PMNS mixing matrix, and the amplitude of neutrinoless double-beta decay. We also find certain correlations between low and high scale CP phases. Especially emphasizing the testable part of the parameter space we demonstrate that our findings are in very good agreement with numerical results. The methods developed in this work can help in exploring more complex scenarios.  
  Address [Hernandez, P.] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: m.pilar.hernandez@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000914640400003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5467  
Permanent link to this record
 

 
Author Di Bari, P.; Ludl, P.O.; Palomares-Ruiz, S. url  doi
openurl 
  Title Unifying leptogenesis, dark matter and high-energy neutrinos with right-handed neutrino mixing via Higgs portal Type Journal Article
  Year 2016 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 11 Issue (down) 11 Pages 044 - 41pp  
  Keywords dark matter theory; leptogenesis; physics of the early universe; ultra high energy photons and neutrinos  
  Abstract We revisit a model in which neutrino masses and mixing are described by a two right-handed (RH) neutrino seesaw scenario, implying a strictly hierarchical light neutrino spectrum. A third decoupled RH neutrino, N-DM with mass M-DM, plays the role of cold dark matter (DM) and is produced by the mixing with a source RH neutrino, Ns with mass M-S, induced by Higgs portal interactions. The same interactions are also responsible for N-DM decays. We discuss in detail the constraints coming from DM abundance and stability conditions showing that in the hierarchical case, for M-DM >> M-S, there is an allowed window on M-DM values necessarily implying a contribution, from DM decays, to the high-energy neutrino flux recently detected by IceCube. We also show how the model can explain the matter-antimatter asymmetry of the Universe via leptogenesis in the quasi-degenerate limit. In this case, the DM mass should be within the range 300 GeV less than or similar to M-S < M-DM < 10PeV. We discuss the specific properties of this high-energy neutrino flux and show the predicted event spectrum for two exemplary cases. Although DM decays, with a relatively hard spectrum, cannot account for all the IceCube high-energy data, we illustrate how this extra source of high-energy neutrinos could reasonably explain some potential features in the observed spectrum. In this way, this represents a unified scenario for leptogenesis and DM that could be tested during the next years with more high-energy neutrino events.  
  Address [Di Bari, Pasquale; Ludl, Patrick Otto] Univ Southampton, Phys & Astron, Southampton SO17 1BJ, Hants, England, Email: P.Di-Bari@soton.ac.uk;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000397734100044 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3020  
Permanent link to this record
 

 
Author Sandner, S.; Hernandez, P.; Lopez-Pavon, J.; Rius, N. url  doi
openurl 
  Title Predicting the baryon asymmetry with degenerate right-handed neutrinos Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 11 Issue (down) 11 Pages 153 - 37pp  
  Keywords Baryo-and Leptogenesis; Sterile or Heavy Neutrinos; Early Universe Particle Physics  
  Abstract We consider the generation of a baryon asymmetry in an extension of the Standard Model with two singlet Majorana fermions that are degenerate above the electroweak phase transition. The model can explain neutrino masses as well as the observed matter-antimatter asymmetry, for masses of the heavy singlets below the electroweak scale. The only physical CP violating phases in the model are those in the PMNS mixing matrix, i.e. the Dirac phase and a Majorana phase that enter light neutrino observables. We present an accurate analytic approximation for the baryon asymmetry in terms of CP flavour invariants, and derive the correlations with neutrino observables. We demonstrate that the measurement of CP violation in neutrino oscillations as well as the mixings of the heavy neutral leptons with the electron, muon and tau flavours suffice to pin down the matter-antimatter asymmetry from laboratory measurements.  
  Address [Sandner, S.] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: stefan.sandner@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001111979900002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5869  
Permanent link to this record
 

 
Author Jeong, K.S.; Park, W.I. url  doi
openurl 
  Title Cosmology with a supersymmetric local B – L model Type Journal Article
  Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 11 Issue (down) 11 Pages 016 - 34pp  
  Keywords cosmological phase transitions; gravitational waves / sources; physics of the early universe; supersymmetry and cosmology  
  Abstract We propose a minimal gauged U(1)(B-L) extension of the minimal supersymmetric Standard Model (MSSM) which resolves the cosmological moduli problem via thermal inflation, and realizes late-time Affleck-Dine leptogensis so as to generate the right amount of baryon asymmetry at the end of thermal inflation. The present relic density of dark matter can be explained by sneutrinos, MSSM neutralinos, axinos, or axions. Cosmic strings from U(1)(B-L) breaking are very thick, and so the expected stochastic gravitational wave background from cosmic string loops has a spectrum different from the one in the conventional Abelian-Higgs model, as would be distinguishable at least at LISA and DECIGO. The characteristic spectrum is due to a flat potential, and may be regarded as a hint of supersymmetry. Combined with the resolution of moduli problem, the expected signal of gravitational waves constrains the U(1)(B-L) breaking scale to be O(10(12-13)) GeV. Interestingly, our model provides a natural possibility for explaining the observed ultra-high-energy cosmic rays thanks to the fact that the core width of strings in our scenario is very large, allowing a large enhancement of particle emissions from the cusps of string loops. Condensation of LHu flat-direction inside of string cores arises inevitably and can also be the main source of the ultra-high-energy cosmic rays accompanied by ultra-high-energy lightest supersymmetric particles.  
  Address [Jeong, Kwang Sik] Pusan Natl Univ, Dept Phys, Busan 46241, South Korea, Email: ksjeong@pusan.ac.kr;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001149204000015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5992  
Permanent link to this record
 

 
Author Beltran Jimenez, J.; Heisenberg, L.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title On gravitational waves in Born-Infeld inspired non-singular cosmologies Type Journal Article
  Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 10 Issue (down) 10 Pages 029 - 23pp  
  Keywords alternatives to inflation; modified gravity; physics of the early universe; primordial gravitational waves (theory)  
  Abstract We study the evolution of gravitational waves for non-singular cosmological solutions within the framework of Born-Infeld inspired gravity theories, with special emphasis on the Eddington-inspired Born-Infeld theory. We review the existence of two types of non-singular cosmologies, namely bouncing and asymptotically Minkowski solutions, from a perspective that makes their features more apparent. We study in detail the propagation of gravitational waves near these non-singular solutions and carefully discuss the origin and severity of the instabilities and strong coupling problems that appear. We also investigate the role of the adiabatic sound speed of the matter sector in the regularisation of the gravitational waves evolution. We extend our analysis to more general Born-Infeld inspired theories where analogous solutions are found. As a general conclusion, we obtain that the bouncing solutions are generally more prone to instabilities, while the asymptotically Minkowski solutions can be rendered stable, making them appealing models for the early universe.  
  Address [Beltran Jimenez, Jose] Univ Toulon & Var, Aix Marseille Univ, CNRS, CPT, Marseille, France, Email: jose.beltran@uam.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000413332400002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3337  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva